(2011•常州)在平面直角坐標(biāo)系XOY中,一次函數(shù)的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點(diǎn).直線l2過(guò)點(diǎn)C(a,0)且與直線l1垂直,其中a>0.點(diǎn)P、Q同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)P沿射線AB運(yùn)動(dòng),速度為每秒4個(gè)單位;點(diǎn)Q沿射線AO運(yùn)動(dòng),速度為每秒5個(gè)單位.
(1)寫(xiě)出A點(diǎn)的坐標(biāo)和AB的長(zhǎng);
(2)當(dāng)點(diǎn)P、Q運(yùn)動(dòng)了多少秒時(shí),以點(diǎn)Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時(shí)a的值.
解:(1)∵一次函數(shù)的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點(diǎn),
∴y=0時(shí),x=﹣4,
∴A(﹣4,0),AO=4,
∵圖象與y軸交點(diǎn)坐標(biāo)為:(0,3),BO=3,
∴AB=5;
(2)由題意得:AP=4t,AQ=5t,==t,
又∠PAQ=∠OAB,
∴△APQ∽△AOB,
∴∠APQ=∠AOB=90°,
∵點(diǎn)P在l1上,
∴⊙Q在運(yùn)動(dòng)過(guò)程中保持與l1相切,
①當(dāng)⊙Q在y軸右側(cè)與y軸相切時(shí),設(shè)l2與⊙Q相切于F,由△APQ∽△AOB,得:
,
∴PQ=6;
連接QF,則QF=PQ,由△QFC∽△APQ∽△AOB,
得:,
,
,
∴QC=,
∴a=OQ+QC=,
②當(dāng)⊙Q在y軸的左側(cè)與y軸相切時(shí),設(shè)l2與⊙Q相切于E,由△APQ∽△AOB得:=,
∴PQ=,
連接QE,則QE=PQ,由△QEC∽△APQ∽△AOB得:=,
,=,
∴QC=,a=QC﹣OQ=,
∴a的值為,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如果點(diǎn)C是線段AB靠近B的黃金分割點(diǎn),且AC=2,那么AB=           

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011•潼南縣)若△ABC∽△DEF,它們的面積比為4:1,則△ABC與△DEF的相似比為( 。
A.2:1B.1:2
C.4:1D.1:4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

觀察右圖,在下列四種圖形變換中,該圖案不包含的變換是【   】
A.平移B.軸對(duì)稱(chēng)C.旋轉(zhuǎn)D.位似

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011廣西崇左,24,14分)(本小題滿(mǎn)分14分)如圖,在邊長(zhǎng)為8的正方形ABCD
中,點(diǎn)OAD上一動(dòng)點(diǎn)(4<OA<8),以O為圓心,OA的長(zhǎng)為半徑的圓交邊CD于點(diǎn)M,連接OM,過(guò)點(diǎn)M作圓O的切線交邊BC于點(diǎn)N.
(1)      求證:△ODM∽△MCN;
(2)      設(shè)DM=x,求OA的長(zhǎng)(用含x的代數(shù)式表示);
(3)      在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,設(shè)△CMN的周長(zhǎng)為p,試用含x的代數(shù)式表示p,你能發(fā)現(xiàn)怎樣的結(jié)論?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿(mǎn)分14分,第(1)小題滿(mǎn)分4分,第(2)、(3)小題滿(mǎn)分各5分)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.點(diǎn)PAB邊上任意一點(diǎn),直線PEAB,與邊ACBC相交于E.點(diǎn)M在線段AP上,點(diǎn)N在線段BP上,EMEN,
(1)如圖1,當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求CM的長(zhǎng);
(2)如圖2,當(dāng)點(diǎn)E在邊AC上時(shí),點(diǎn)E不與點(diǎn)A、C重合,設(shè)APx,BNy,求y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出函數(shù)的定義域;
(3)若△AME∽△ENB(△AME的頂點(diǎn)AM、E分別與△ENB的頂點(diǎn)EN、B對(duì)應(yīng)),求AP長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在等腰Rt△ABC中,AB=BC點(diǎn)E在BC上,以AE為邊作正方形AEMN,EM交AB于F,連結(jié)BM.
(1)求證:BM⊥AB
(2)若CE=2BE,求的值.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

、形狀     的圖形叫相似形;兩個(gè)圖形相似,其中一個(gè)圖形可以看作由另一個(gè)圖形的       
而得到的。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知直線AB上有一點(diǎn)C,且BC:AB=1:3,則
AC
AB
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案