【題目】如圖,方格紙中的每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位的正方形,RtABC的頂點(diǎn)均在格點(diǎn)上,在建立平面直角坐標(biāo)系后,點(diǎn)A的坐標(biāo)為(-6,1),點(diǎn)B的坐標(biāo)為(-3,1),點(diǎn)C的坐標(biāo)為(-3,3).

(1)將原來的RtABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到RtA1B1C1,試在圖上畫出RtA1B1C1的圖形.

(2)求線段BC掃過的面積.

(3)求點(diǎn)A旋轉(zhuǎn)到A1路徑長(zhǎng).

【答案】1)圖見解析;(2;(3.

【解析】

(1)根據(jù)旋轉(zhuǎn)角度、旋轉(zhuǎn)方向、旋轉(zhuǎn)點(diǎn)找出各點(diǎn)的對(duì)應(yīng)點(diǎn),順次連接即可得出.

(2)兩個(gè)扇形的面積相減即可得出線段BC掃過的面積.

(3)根據(jù)圖形及勾股定理即可算出的長(zhǎng)度.

(1)所畫圖形如下:

(2)根據(jù)圖形可得:求線段BC掃過的面積=π=2π.

(3)根據(jù)坐標(biāo)圖可得:=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,運(yùn)載火箭從地面L處垂直向上發(fā)射,當(dāng)火箭到達(dá)A點(diǎn)時(shí),從位于地面R處的雷達(dá)測(cè)得AR的距離是40km,仰角是30°,n秒后,火箭到達(dá)B點(diǎn),此時(shí)仰角是45°,則火箭在這n秒中上升的高度是_____km.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在矩形ABCD中,AB6,BC8,E為直線BC上一點(diǎn).

1)如圖1,當(dāng)E在線段BC上,且DEAD時(shí),求BE的長(zhǎng);

2)如圖2,點(diǎn)EBC延長(zhǎng)長(zhǎng)線上一點(diǎn),若BDBE,連接DE,MED的中點(diǎn),連接AM,CM,求證:AMCM

3)如圖3,在(2)條件下,PQAD邊上的兩個(gè)動(dòng)點(diǎn),且PQ5,連接PB、MQ、BM,求四邊形PBMQ的周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊分別切⊙OD,E,F(xiàn).

(1)若∠A=40°,求∠DEF的度數(shù);

(2)AB=AC=13,BC=10,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90,sinC=,AC=8,BD平分∠ABC交邊AC于點(diǎn)D

求(1)AB的長(zhǎng);

(2)tanABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=10,BC=5,點(diǎn)P是邊AC上的一個(gè)動(dòng)點(diǎn),APD=∠ABC,ADBC,連接CD

(1)求證AD=2AP;

(2)如圖,若BACD的延長(zhǎng)線交于點(diǎn)M,AP=1,求AM的長(zhǎng);

(3)如圖,若ABDC的延長(zhǎng)線交于點(diǎn)N,當(dāng)CDPBCN相似時(shí),求證點(diǎn)PAC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的對(duì)角線相交于點(diǎn),點(diǎn)中點(diǎn),若的周長(zhǎng)為28,,則的周長(zhǎng)為(

A.12B.17C.19D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了美化環(huán)境,建設(shè)魅力呼和浩特,呼和浩特市準(zhǔn)備在一個(gè)廣場(chǎng)上種植甲、乙兩種花卉經(jīng)市場(chǎng)調(diào)查,甲種花卉的種植費(fèi)用 (元)與種植面積之間的函數(shù)關(guān)系如圖所示乙種花卉的種植費(fèi)用為每平方米100

1)直接寫出當(dāng)時(shí),的函數(shù)關(guān)系式.

2)廣場(chǎng)上甲、乙兩種花卉的種植面積共,若甲種花卉的種植面積不少于,且不超過乙種花卉種植面積的2倍,那么應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用最少?最少總費(fèi)用為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,等腰直角三角形AOB在如圖所示的位置,點(diǎn)B的橫坐標(biāo)為2,將△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°,得到△AOB′,則點(diǎn)A′的坐標(biāo)為( 。

A. (1,1) B. ,

C. (﹣1,1) D. (﹣

查看答案和解析>>

同步練習(xí)冊(cè)答案