【題目】棱長(zhǎng)分別為的兩個(gè)正方體如圖放置,點(diǎn),,在同一直線(xiàn)上,頂點(diǎn)在棱上,點(diǎn)的中點(diǎn).一只螞蟻要沿著正方體的表面從點(diǎn)爬到點(diǎn),它爬行的最短距離是__________

【答案】

【解析】

分兩種情況展開(kāi),求最短距離,情況一:將翻折至和共面,使得點(diǎn)A和點(diǎn)P在同一平面,連接兩點(diǎn)即為最短距離;情況二,求出最短距離,然后進(jìn)行比較即可得出。

情況一:如下圖,將翻折至和共面,過(guò)點(diǎn)PAE的垂線(xiàn)交AE于點(diǎn)M,連接AP

∵兩個(gè)正方體的棱長(zhǎng)分別為

AB=8cm,BE=MP=6cm

∵點(diǎn)P的中點(diǎn)

EM=3cm

AM=8+6+3=17cm

∴在RtAMP中,AP=

情況二:如下圖展開(kāi)

AE=8+6=14cm

EP=6+3=9cm

∴在RtAEP, AP=

∴最短距離為

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線(xiàn)l1,l2l3,l4是同一平面內(nèi)的一組平行線(xiàn).

1)如圖1,正方形ABCD4個(gè)頂點(diǎn)都在這些平行線(xiàn)上,若四條直線(xiàn)中相鄰兩條之間的距離都是1,其中點(diǎn)A,點(diǎn)C分別在直線(xiàn)l1l4上,求正方形的面積.

2)如圖2,正方形ABCD4個(gè)頂點(diǎn)分別在四條平行線(xiàn)上,若四條直線(xiàn)中相鄰兩條之間的距離依次為h1,h2,h3

①求證:h1h3

②設(shè)正方形ABCD的面積為S,求證:S2h12+2h1h2+h22

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,DAB中點(diǎn),過(guò)點(diǎn)DDF//BCAC于點(diǎn)E,且DE=EF,連接AF,CFCD

1)求證:四邊形ADCF為平行四邊形;

2)若∠ACD=45°,∠EDC=30°,BC=4,求CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)AB,C的坐標(biāo)分別為A(﹣2,3),B(﹣31),C0,1)請(qǐng)解答下列問(wèn)題:

1ABCA1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱(chēng),畫(huà)出A1B1C1并直接寫(xiě)出點(diǎn)A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo);

2)畫(huà)出ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°后得到的A2B2C,并求出線(xiàn)段AC旋轉(zhuǎn)時(shí)掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為響應(yīng)“學(xué)雷鋒、樹(shù)新風(fēng)、做文明中學(xué)生”的號(hào)召,某校開(kāi)展了志愿者服務(wù)活動(dòng),活動(dòng)項(xiàng)目有“防疫宜宣傳”、“文明交通崗”、“關(guān)愛(ài)老人”、“義務(wù)植樹(shù)”、“社區(qū)服務(wù)”五項(xiàng),活動(dòng)期間,隨機(jī)抽取了部分學(xué)生對(duì)志思者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動(dòng),最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

根據(jù)以上統(tǒng)計(jì)圖解答下列問(wèn)題:

1)本次隨機(jī)抽取的學(xué)生共有______名;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)若該校有3000名學(xué)生,請(qǐng)估計(jì)參與了4項(xiàng)活動(dòng)的學(xué)生人數(shù);

4)在所調(diào)查的學(xué)生中隨機(jī)選取一人談活動(dòng)心得,求選中參與了5項(xiàng)活動(dòng)的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷(xiāo).據(jù)市場(chǎng)調(diào)查,銷(xiāo)售單價(jià)是100元時(shí),每天的銷(xiāo)售量是50件,而銷(xiāo)售單價(jià)每降低1元,每天就可多售出5件,但要求銷(xiāo)售單價(jià)不得低于成本.

求出每天的銷(xiāo)售利潤(rùn)與銷(xiāo)售單價(jià)之間的函數(shù)關(guān)系式;

求出銷(xiāo)售單價(jià)為多少元時(shí),每天的銷(xiāo)售利潤(rùn)最大?最大利潤(rùn)是多少?

如果該企業(yè)要使每天的銷(xiāo)售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷(xiāo)售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷(xiāo)售量

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)為貫徹落實(shí)綠水青山就是金山銀山的發(fā)展理念,投資組建了日廢水處理量為m噸的廢水處理車(chē)間,對(duì)該廠(chǎng)工業(yè)廢水進(jìn)行無(wú)害化處理. 但隨著工廠(chǎng)生產(chǎn)規(guī)模的擴(kuò)大,該車(chē)間經(jīng)常無(wú)法完成當(dāng)天工業(yè)廢水的處理任務(wù),需要將超出日廢水處理量的廢水交給第三方企業(yè)處理. 已知該車(chē)間處理廢水,每天需固定成本30元,并且每處理一噸廢水還需其他費(fèi)用8元;將廢水交給第三方企業(yè)處理,每噸需支付12.根據(jù)記錄,521日,該廠(chǎng)產(chǎn)生工業(yè)廢水35噸,共花費(fèi)廢水處理費(fèi)370.

(1)求該車(chē)間的日廢水處理量m;

(2)為實(shí)現(xiàn)可持續(xù)發(fā)展,走綠色發(fā)展之路,工廠(chǎng)合理控制了生產(chǎn)規(guī)模,使得每天廢水處理的平均費(fèi)用不超過(guò)10/噸,試計(jì)算該廠(chǎng)一天產(chǎn)生的工業(yè)廢水量的范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩校分別有一男一女共4名教師報(bào)名到農(nóng)村中學(xué)支教.

(1)若從甲、乙兩校報(bào)名的教師中分別隨機(jī)選1名,則所選的2名教師性別相同的概率是

(2)若從報(bào)名的4名教師中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名教師來(lái)自同一所學(xué)校的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在,D是斜邊AB上的一個(gè)動(dòng)點(diǎn),沿直線(xiàn)CD折疊,點(diǎn)A落在同一平面內(nèi)的處,當(dāng)D垂直于的直角邊時(shí),AD的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案