【題目】如圖,在中,按以下步驟作圖:

第一步:分別以點為圓心,以大于的長為半徑畫弧,兩弧相交于兩點;

第二步:作直線于點,連接

1______三角形;(等邊、直角、等腰”)

2)若,則的度數(shù)為___________

【答案】等腰 68°

【解析】

1)根據(jù)尺規(guī)作圖方法可知,直線MN為線段AC的垂直平分線,由垂直平分線的性質可得AD=CD,從而判斷△ADC為等腰三角形;

2)由三角形的外角的性質可知∠ADB的度數(shù),再由AB=BD,可得∠BAD=ADB,最后由三角形的內角和計算即可.

解:(1)由題意可知,直線MN為線段AC的垂直平分線,

AD=CD

∴△ADC為等腰三角形,

故答案為:等腰.

2)∵△ADC是等腰三角形,

∴∠C=DAC=28°

又∵∠ADB是△ADC的外角,

∴∠ADB=C+DAC=28°+28°=56°

BAD=ADB=56°

∴∠B=180°-BAD -ADB=180°-56°-56°=68°,

故答案為:68°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在東營市中小學標準化建設工程中,某學校計劃購進一批電腦和電子白板,經過市場考察得知,購買1臺電腦和2臺電子白板需要3.5萬元,購買2臺電腦和1臺電子白板需要2.5萬元.

1)求每臺電腦、每臺電子白板各多少萬元?

2)根據(jù)學校實際,需購進電腦和電子白板共30臺,總費用不超過30萬元,但不低于28萬元,請你通過計算求出有幾種購買方案,哪種方案費用最低.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知梯形 ABCD 中,ADBC,對角線 AC、BD 相交于點O, AOB 與△BOC 的面積分別為 48,則梯形ABCD 的面積等于___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經銷商準備把“茶路”融入“絲路”,經計算,他銷售10A級別和20B級別茶葉的利潤為4000元,銷售20A級別和10B級別茶葉的利潤為3500

1)分別求出每斤A級別茶葉和每斤B級別茶葉的銷售利潤;

2)若該經銷商一次購進兩種級別的茶葉共200斤用于出口.設購買A級別茶葉a斤(70a120),銷售完AB兩種級別茶葉后獲利w元.

①求出wa之間的函數(shù)關系式;

②該經銷商購進A、B兩種級別茶葉各多少斤時,才能獲取最大的利潤,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個直角三角形紙片的頂點A在MON的邊OM上移動,移動過程中始終保持ABON于點B,ACOM于點A.MON的角平分線OP分別交AB、AC于D、E兩點.

(1)點A在移動的過程中,線段AD和AE有怎樣的數(shù)量關系,并說明理由.

(2)點A在移動的過程中,若射線ON上始終存在一點F與點A關于OP所在的直線對稱,猜想線段DF和AE有怎樣的關系,并說明理由.

(3)若MON=45°,猜想線段AC、AD、OC之間有怎樣的數(shù)量關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是“作圓的內接正方形”的尺規(guī)作圖過程。

已知:⊙O.

求作:圓的內接正方形.

如圖,

1)過圓心O作直線AC,與⊙O相交于A,C兩點;

2)過點O作直線BD⊥AC,交⊙OB,D兩點;

3)連接AB,BC,CD,DA

∴四邊形ABCD為所求。

請回答:該尺規(guī)作圖的依據(jù)是____________________________。(寫出兩條)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班數(shù)學興趣小組對不等式組,討論得到以下結論:①若a5,則不等式組的解集為3<x≤5;②若a2,則不等式組無解;③若不等式組無解,則a的取值范圍為a<3;④若不等式組只有兩個整數(shù)解,則a的值可以為5.1,其中,正確的結論的序號是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△和△中,,分別為邊和邊上的中線,再從以下三個條件:①;②;③中任取兩個為已知條件,另一個為結論,則最多可以構成_______個正確的命題.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,C=90°,AC=4cm,BC=3cm.動點M,N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A,B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,設移動時間為t(單位:秒,0<t<2.5).

(1)當t為何值時,以A,P,M為頂點的三角形與ABC相似?

(2)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案