【題目】如圖1,菱形ABCD,AB=4,∠ADC=120o,連接對角線AC、BD交于點O,

(1)如圖2,將△AOD沿DB平移,使點D與點O重合,求平移后的△ABO與菱形ABCD重合部分的面積.

(2)如圖3,將△ABO繞點O逆時針旋轉(zhuǎn)交AB于點E,交BC于點F,

①求證:BE′+BF=2,

②求出四邊形OEBF的面積.

【答案】(1);(2)①2,②

【解析】分析:(1)重合部分是等邊三角形,計算出邊長即可.

證明:在圖3中,取AB中點E,證明,即可得到

,

知,在旋轉(zhuǎn)過程60°中始終有四邊形的面積等于 =.

詳解:(1)四邊形為菱形,

為等邊三角形

AD//

為等邊三角形,邊長

重合部分的面積:

證明:在圖3中,取AB中點E,

由上題知,

,

,

知,在旋轉(zhuǎn)過程60°中始終有

四邊形的面積等于=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐學(xué)習(xí)活動準(zhǔn)備制作一組三角形,記這些三角形的三邊分別為,,,用記號 表示一個滿足條件的三角形,如表示邊長分別為2,4,4個單位長度的一個三角形.

1)若這些三角形三邊的長度為大于0且小于3的整數(shù)個單位長度,請用記號寫出所有滿足條件的三角形;

2)如圖,的中線,線段,的長度分別為2個,6個單位長度,且線段的長度為整數(shù)個單位長度,過點的延長線于點

①求之長;

②請直接用記號表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個六邊形的六個內(nèi)角都是120°,連續(xù)四邊的長依次為2.312.32,2.33,2.31,則這個六邊形的周長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知邊長為2的正三角形ABC頂點A的坐標(biāo)為(0,6),BC的中點Dy軸上,且在點A下方,點E是邊長為2、中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉(zhuǎn)一周,在此過程中DE的最小值為(  )

A. 3 B. 4﹣ C. 4 D. 6﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,點、分別在、上運動(不與點重合).

1)如圖1的平分線,的反方向延長線與的平分線交于點

①若,則為多少度?請說明理由.

②猜想:的度數(shù)是否隨、的移動發(fā)生變化?請說明理由.

2)如圖2,若,,則的大小為 度(直接寫出結(jié)果);

3)若將“”改為“)”,且,其余條件不變,則的大小為 度(用含、的代數(shù)式直接表示出米).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一熱氣球到達(dá)離地面高度為36米的A處時,儀器顯示正前方一高樓頂部B的仰角是37°,底部C的俯角是60°.為了安全飛越高樓,氣球應(yīng)至少再上升多少米?(結(jié)果精確到0.1米)(參考數(shù)據(jù):參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在四邊形ABCD中,點E、F分別是ABCD的中點,過點EAB的垂線,過點FCD的垂線,兩垂線交于點G,連接AGBG、CG、DG,且∠AGD∠BGC

1)求證:ADBC

2)求證:△AGD∽△EGF;

3)如圖2,若AD、BC所在直線互相垂直,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點M為矩形ABCD中邊BC的中點,若要使為等腰直角三角形,則再須添加一條件;那么在下列給出的條件中,錯誤的是  

A. B. AM的平分線

C. AM D. AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市扶貧辦在精準(zhǔn)扶貧工作中,組織30輛汽車裝運花椒、核桃、甘藍(lán)向外地銷售.按計劃30輛車都要裝運,每輛汽車只能裝運同一種產(chǎn)品,且必須裝滿,根據(jù)下表提供的信息,解答以下問題:

產(chǎn)品名稱

核桃

花椒

甘藍(lán)

每輛汽車運載量(噸)

10

6

4

每噸土特產(chǎn)利潤(萬元)

0.7

0.8

0.5

若裝運核桃的汽車為x輛,裝運甘藍(lán)的車輛數(shù)是裝運核桃車輛數(shù)的2倍多1,假設(shè)30輛車裝運的三種產(chǎn)品的總利潤為y萬元.

(1)yx之間的函數(shù)關(guān)系式;

(2)若裝花椒的汽車不超過8輛,求總利潤最大時,裝運各種產(chǎn)品的車輛數(shù)及總利潤最大值.

查看答案和解析>>

同步練習(xí)冊答案