如圖,在直角梯形ABCD中,底AB=13,CD=8,AD⊥AB并且AD=12,則A到BC的距離為( 。
A.12B.13C.
12×21
13
D.10.5

如圖,作CE⊥AB交點為E,作AF⊥BC交點為F.
∵在直角梯形ABCD中,AD⊥AB,CE⊥AB,
∴DC=AE=8,AD=CE=12,則BE=AB-AE=13-8=5,
∴在直角三角形BCE中,BC=
CE2+BE2
=13.即可得AB=CB;
∵∠CEB=∠AFB=90°,∠B為公共角,AB=CB,
∴△AFB≌△CEB(AAS),
∴CE=AF=12.
故選A.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示,在直角梯形ABCD中,ABCD,∠B=∠C=90°,AD=20,BC=10,則∠A和∠D分別是( 。
A.30°,150°B.45°,135°C.120°,60°D.150°,30°

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

用四個相同的等腰梯形拼成如圖所示的四邊形ABCD,則∠A=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

梯形ABCD,ADBC,∠A=90°AB=8cm,AD=24cm,BC=26cm點,點P從A出發(fā)沿線段AD的方向以1cm/s的速度運動;點Q從C出發(fā)沿線段CB的方向以3cm/s的速度運動,點P、Q分別從A、C同時出發(fā),當點P運動到點D時,點Q隨之停止運動.設運動時間為t(秒).
(1)設四邊形PQCD的面積為S,寫出S與t之間的函數(shù)關系(注明自變量的取值范圍);
(2)當t為何值時,四邊形PQCD為等腰梯形?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在等腰梯形ABCD中,AB=2,BC=4,∠B=45°,則該梯形的面積是(  )
A.2
2
-1
B.4-
2
C.8
2
-4
D.4
2
-2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知等腰梯形的銳角等于60°,它的兩底長分別為15cm和49cm,則它的一腰長為( 。
A.49cmB.15cmC.32cmD.34cm

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在?ABCD中,BC=4m,E為AD的中點,F(xiàn)、G分別為BE、CD的中點,則FG=______m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ADBC,AE⊥BC于點E.DF⊥BC于點F.AD=2cm,BC=6cm,AE=4cm.點P、Q分別在線段AE、DF上,順次連接B、P、Q、C,線段BP、PQ、QC、CB所圍成的封閉圖形記為M,若點P在線段AE上運動時,點Q也隨之在線段DF上運動,使圖形M的形狀發(fā)生改變,但面積始終為10cm2,設EP=xcm,F(xiàn)Q=ycm.解答下列問題:
(1)直接寫出當x=3時y的值;
(2)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)當x取何值時,圖形M成為等腰梯形?圖形M成為三角形?
(4)直接寫出線段PQ在運動過程中所能掃過的區(qū)域的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在梯形ABCD中,ADBC,∠BCD=90°,BC=2AD,F(xiàn),E分別是AB,BC的中點,則下列結論不一定正確的是(  )
A.△ABC是等腰三角形B.四邊形EFAM是菱形
C.S△BEF=
1
2
S△ACD
D.DE平分∠CDF

查看答案和解析>>

同步練習冊答案