【題目】如圖,在Rt△ABC中,∠C=90°,以AC為一邊向外作等邊三角形ACD,點(diǎn)E為AB的中點(diǎn),連結(jié)DE.
(1)證明DE∥CB;
(2)探索AC與AB滿足怎樣的數(shù)量關(guān)系時(shí),四邊形DCBE是平行四邊形.
【答案】
(1)證明:連結(jié)CE.
∵點(diǎn)E為Rt△ACB的斜邊AB的中點(diǎn),
∴CE= AB=AE.
∵△ACD是等邊三角形,
∴AD=CD.
在△ADE與△CDE中, ,
∴△ADE≌△CDE(SSS),
∴∠ADE=∠CDE=30°.
∵∠DCB=150°,
∴∠EDC+∠DCB=180°.
∴DE∥CB
(2)解:當(dāng)AC= 或AB=2AC時(shí),四邊形DCBE是平行四邊形,
理由:∵AC= ,∠ACB=90°,
∴∠B=30°,
∵∠DCB=150°,
∴∠DCB+∠B=180°,
∴DC∥BE,又∵DE∥BC,
∴四邊形DCBE是平行四邊形.
【解析】(1)首先連接CE,根據(jù)直角三角形的性質(zhì)可得CE= AB=AE,再根據(jù)等邊三角形的性質(zhì)可得AD=CD,然后證明△ADE≌△CDE,進(jìn)而得到∠ADE=∠CDE=30°,再有∠DCB=150°可證明DE∥CB;(2)當(dāng)AC= 或AB=2AC時(shí),四邊形DCBE是平行四邊形.根據(jù)(1)中所求得出DC∥BE,進(jìn)而得到四邊形DCBE是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長(zhǎng)線于⊙O的切線AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】實(shí)數(shù)a、b、c在數(shù)軸上的位置如圖所示,化簡(jiǎn):﹣|a+c|+﹣|﹣2b|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在左邊托盤A(固定)中放置一個(gè)重物,在右邊托盤B(可左右移動(dòng))中放置一定質(zhì)量的砝碼,可使得儀器左右平衡,改變托盤B與支撐點(diǎn)M的距離,記錄相應(yīng)的托盤B中的砝碼質(zhì)量,得到下表:
(1)把上表中(x,y)的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在如圖所示的平面直角坐標(biāo)系中描出其余的點(diǎn),并用一條光滑曲線起來(lái).觀察所畫的圖像,猜想y與x之間的函數(shù)關(guān)系,求出該函數(shù)關(guān)系式;
(2)當(dāng)托盤B向左移動(dòng)(不能超過點(diǎn)M)時(shí),應(yīng)往托盤B中添加砝碼還是減少砝碼?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是∠BAC內(nèi)的一點(diǎn),PE⊥AB,PF⊥AC,垂足分別為點(diǎn)E,F(xiàn),AE=AF. 求證:
(1)PE=PF;
(2)點(diǎn)P在∠BAC的角平分線上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知反比例函數(shù)y=,當(dāng)x=-時(shí),y=-6.
(1)這個(gè)函數(shù)的圖象位于哪些象限?y隨x的增大如何變化?
(2)當(dāng)<x<4時(shí),求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A,C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線y=–x+3交AB,BC于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過點(diǎn)M,N.
(1)求反比例函數(shù)的解析式;
(2)若點(diǎn)P在x軸上,且△OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,點(diǎn)E是射線CB上的一個(gè)動(dòng)點(diǎn),把△DCE沿DE折疊,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C′.
(1)若點(diǎn)C′剛好落在對(duì)角線BD上時(shí),BC′=;
(2)當(dāng)B C′∥DE時(shí),求CE的長(zhǎng);
(3)若點(diǎn)C′剛好落在線段AD的垂直平分線上時(shí),求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某天早晨,張強(qiáng)從家跑步去體育鍛煉,同時(shí)媽媽從體育場(chǎng)晨練結(jié)束回家,途中兩人相遇,張強(qiáng)跑到體育場(chǎng)后發(fā)現(xiàn)要下雨,立即按原路返回,遇到媽媽后兩人一起回到家(張強(qiáng)和媽媽始終在同一條筆直的公路上行走).如圖是兩人離家的距離y(米)與張強(qiáng)出發(fā)的時(shí)間x(分)之間的函數(shù)圖象,根據(jù)圖象信息解答下列問題:
(1)求張強(qiáng)返回時(shí)的速度;
(2)媽媽比按原速返回提前多少分鐘到家?
(3)請(qǐng)直接寫出張強(qiáng)與媽媽何時(shí)相距1000米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com