【題目】如圖,已知B、E、C、F在同一條直線上,BE=CF,AB∥DE,則下列條件中,不能判斷△ABC≌△DEF的是( )
A.B.C.D.
【答案】D
【解析】
首先根據(jù)等式的性質(zhì)可得BC=EF,再根據(jù)平行線的性質(zhì)可得∠B=∠DEF,再分別添加四個選項中的條件,結合全等三角形的判定定理進行分析即可.
解:∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
∵AB∥DE,
∴∠B=∠DEF,
A、添加AB=DE,可利用SAS判定△ABC≌△DEF,故此選項不合題意;
B、添加∠A=∠D,可利用AAS判定△ABC≌△DEF,故此選項不合題意;
C、添加AC∥DF,可得∠ACB=∠F,可利用ASA判定△ABC≌△DEF,故此選項不合題意;
D、添加AC=DF,不能判定△ABC≌△DEF,故此選項符合題意;
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC≌△A′B′C,∠ACB=90°,∠B=50°,點B′在線段AB上,AC,A′B′交于點O,則∠COA′的度數(shù)是( )
A.50°B.60°
C.45°D.80°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:AP平分,點B是射線AP上一定點,點C在直線AM上運動,連接BC.
如圖1,,將的兩邊射線BC和BA分別繞點B順時針旋轉(zhuǎn),旋轉(zhuǎn)后角的兩邊分別與射線AN交于點D和點當點C在射線AM上時,請直接寫出:
和BC之間的數(shù)量關系是______;
線段AC,AD和AB之間的數(shù)量關系是______.
如果,將的兩邊射線BC和BA分別繞點B順時針旋轉(zhuǎn),旋轉(zhuǎn)后角的兩邊分別與射線AN交于點D和點E.
如圖2,當點C在射線AM上時,請?zhí)骄烤段AC,AD和AB之間的數(shù)量關系,寫出結論并給予證明;
如圖3,當點C在射線AM的反向延長線上時,BC交射線AN于點F,若,,請直接寫出線段AD和DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:數(shù)學課上,老師提出如下問題:尺規(guī)作圖:作一角等于已知角.
已知: (圖)
求作:,使得,
小明解答如圖所示:
老師說:“小明作法正確.”
請回答:小明的作圖依據(jù)是 __________________________________;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以直角三角形AOC的直角頂點O為原點,以OC、OA所在直線為x軸和y軸建立平面直角坐標系,點,滿足.
則C點的坐標為______;A點的坐標為______.
已知坐標軸上有兩動點P、Q同時出發(fā),P點從C點出發(fā)沿x軸負方向以1個單位長度每秒的速度勻速移動,Q點從O點出發(fā)以2個單位長度每秒的速度沿y軸正方向移動,點Q到達A點整個運動隨之結束的中點D的坐標是,設運動時間為秒問:是否存在這樣的t,使?若存在,請求出t的值;若不存在,請說明理由.
點F是線段AC上一點,滿足,點G是第二象限中一點,連OG,使得點E是線段OA上一動點,連CE交OF于點H,當點E在線段OA上運動的過程中,的值是否會發(fā)生變化?若不變,請求出它的值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是等邊的外角內(nèi)部的一條射線,點關于的對稱點為,連接,,,其中、分別交射線于點,.
(1)依題意補全圖形;
(2)若,求的大。ㄓ煤的式子表示);
(3)若,,求的長度(用,的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校英語社團舉行了“單詞聽寫大賽”,每位參賽選手共聽寫單詞100個現(xiàn)從參加比賽的男女選手中分別隨機抽取部分學生進行調(diào)查,對答對的情況進行分組如下:組:,B組:,C組:,D組:,E組:并繪制了如下不完整的統(tǒng)計圖:
請根據(jù)以上信息解答下列問題:
本次調(diào)查共抽取了多少名學生,并將條形統(tǒng)計圖補充完整;
求出A組所對的扇形圓心角的度數(shù);
若從D、E兩組中分別抽取一位學生進行采訪,請用畫樹狀圖或列表法求出恰好抽到兩位女學生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線過點,交x軸于A,B兩點點A在點B的左側(cè).
求拋物線的解析式,并寫出頂點M的坐標;
連接OC,CM,求的值;
若點P在拋物線的對稱軸上,連接BP,CP,BM,當時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,頂端距離地面2米,則小巷的寬度為( )
A.2.2米B.2.3米C.2.4米D.2.5米
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com