【題目】某公司用100萬元研發(fā)一種市場急需電子產(chǎn)品,已于當年投入生產(chǎn)并銷售,已知生產(chǎn)這種電子產(chǎn)品的成本為4/件,在銷售過程中發(fā)現(xiàn):每年的年銷售量y(萬件)與銷售價格x(元/件)的關(guān)系如圖所示,其中AB為反比例函數(shù)圖象的一部分,設(shè)公司銷售這種電子產(chǎn)品的年利潤為s(萬元).

1)請求出y(萬件)與x(元/件)的函數(shù)表達式;

2)求出第一年這種電子產(chǎn)品的年利潤s(萬元)與x(元/件)的函數(shù)表達式,并求出第一年年利潤的最大值.

【答案】1y;(2)當每件的銷售價格定為16元時,第一年年利潤的最大值為44萬元.

【解析】

1)依據(jù)待定系數(shù)法,即可求出y(萬件)與x(元/件)之間的函數(shù)關(guān)系式;

2)分兩種情況進行討論,當x8時,smax=﹣20;當x16時,smax44;根據(jù)44>﹣20,可得當每件的銷售價格定為16元時,第一年年利潤的最大值為44萬元.

解:(1)當4≤x≤8時,設(shè)y,將A4,40)代入得k4×40160,

yx之間的函數(shù)關(guān)系式為y

8x≤28時,設(shè)yk'x+b,將B8,20),C28,0)代入得,

,

解得

yx之間的函數(shù)關(guān)系式為y=﹣x+28,

綜上所述,y;

2)當4≤x≤8時,s=(x4y160=(x4100+60,

∵當4≤x≤8時,s隨著x的增大而增大,

∴當x8時,smax+60=﹣20;

8x≤28時,s=(x4y80=(x4)(﹣x+28)﹣80=﹣(x1002+44

∴當x16時,smax44;

44>﹣20,

∴當每件的銷售價格定為16元時,第一年年利潤的最大值為44萬元.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)yax2+bxybx+a的圖象可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某果農(nóng)的蘋果園有蘋果樹60棵,由于提高了管理水平,可以通過補種一些蘋果樹的方法來提高總產(chǎn)量.但如果多種樹,那么樹之間的距離和每棵樹所受的光照就會減少,單棵樹的產(chǎn)量也隨之降低.已知在一定范圍內(nèi),該果園每棵果樹產(chǎn)果y(千克)與補種果樹x(棵)之間的函數(shù)關(guān)系如圖所示.若超過這個范圍,則會嚴重影響果樹的產(chǎn)量.

(1)求yx之間的函數(shù)關(guān)系式;

(2)在這個范圍內(nèi),當增種果樹多少棵時,果園的總產(chǎn)量w(千克)最大?最大產(chǎn)量是多少?

(3)若該果農(nóng)的蘋果以3/千克的價格售出,不計其他成本,按(2)的方式可以多收入多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】興隆商場用36萬元購進A、B兩種品牌的服裝,銷售完后共獲利6萬元,其進價和售價如下表:

該商場購進A、B兩種服裝各多少件?

(2)第二次以原價購進A、B兩種服裝,購進B服裝的件數(shù)不變,購進A服裝的件數(shù)是第一次的2倍,A種服裝按原價出售,而B種服裝打折銷售;若兩種服裝銷售完畢,要使第二次銷售活動獲利不少于81600元,則B種服裝最低打幾折銷售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A0,1),B4,2),C2,0).

1)將△ABC沿y軸翻折得到△A1B1C1,畫出△A1B1C1;

2)將△ABC繞著點(﹣1,﹣1)旋轉(zhuǎn)180°得到△A2B2C2,畫出△A2B2C2;

3)線段B2C2可以看成是線段B1C1繞著平面直角坐標系中某一點逆時針旋轉(zhuǎn)得到,直接寫出旋轉(zhuǎn)中心的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(圖1),在△ABC中,∠B45°,點P從△ABC的頂點出發(fā),沿ABC勻速運動到點C,(圖2)是點P運動時,線段AP的長度y隨時間x變化的關(guān)系圖象,其中M,N為曲線部分的兩個端點,則△ABC的周長是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D為圓O上一點,點C在直徑AB的延長線上,且∠CAD=∠BDC,過點A作⊙O的切線,交CD的延長線于點E

1)求證:CD是⊙O的切線;(2)若CB3CD9,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為增強學生環(huán)保意識,某中學組織全校2000名學生參加環(huán)保知識大賽,比賽成績均為整數(shù),從中抽取部分同學的成績進行統(tǒng)計,并繪制成如圖統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)若抽取的成績用扇形圖來描述,則表示第三組(79.5~89.5)”的扇形的圓心角為多少度;

(2)若成績在90分以上(含90分)的同學可以獲獎,請估計該校約有多少名同學獲獎?

(3)某班準備從成績最好的4名同學(男、女各2名)中隨機選取2名同學去社區(qū)進行環(huán)保宣傳,則選出的同學恰好是11女的概率為多少.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小組合作制正在七年級如火如茶地開展,旨在培養(yǎng)七年級學生的合作學習的精神和能力,學會在合作中自主探索.數(shù)學課上,吳老師在講授角平分線時,設(shè)計了如下四種教學方法:①教師講授,學生練習;②學生合作交流,探索規(guī)律;③教師引導學生總結(jié)規(guī)律,學生練習;④教師引導學生總結(jié)規(guī)律,學生合作交流,吳老師將上述教學方法作為調(diào)研內(nèi)容發(fā)到七年級所有同學手中要求每位同學選出自己最喜歡的一種,然后吳老師從所有調(diào)查問卷中隨機抽取了若干份調(diào)查問卷作為樣本,統(tǒng)計如下:

序號①②③④代表上述四種教學方法,圖二中,表示①部分的扇形的中心角度數(shù)為36°,請回答問題:

(1)在后來的抽樣調(diào)查中,吳老師共抽取   位學生進行調(diào)查;并將條形統(tǒng)計圖補充完整;

(2)圖二中,表示③部分的扇形的中心角為多少度?

(3)若七年級學生中選擇④種教學方法的有540人,請估計七年級總?cè)藬?shù)約為多少人?

查看答案和解析>>

同步練習冊答案