【題目】在中,為線段上一點,為射線上一點,且,連接.
(1)如圖1,若,請補全圖形并求的長;
(2)如圖2,若,連接并延長,交于點,小明通過觀察、實驗提出猜想:.小明把這個猜想與同學們進行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:過作交的延長線于點,先證出,再證出是等腰三角形即可;
想法2:過作交于點,先證出,再證點為線段的中點即可.
請你參考上面的想法,幫助小明證明.(一種方法即可)
科目:初中數(shù)學 來源: 題型:
【題目】春節(jié)期間某商場搞促銷活動,方案是:在一個不透明的箱子里放4個完全相同的小球,球上分別標“0元”、“20元”、“30元”、“50元”,顧客每消費滿300元,就可從箱子里同時摸出兩個球,根據(jù)這兩個小球所標金額之和可獲相應價格的禮品;
(1)若某顧客在甲商商場消費320元,至少可得價值______元的禮品,至多可得價值______元的禮品;
(2)請用畫樹狀圖或列表的方法,求該顧客去商場消費,獲得禮品的總價值不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1.的半徑為,若點在射線上,且,則稱點是點關于的“反演點”,如圖2,的半徑為2,點在上.,,若點是點關于的反演點,點是點關于的反演點,則的長為( )
A.B.C.2D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們規(guī)定:平面內點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(1,0)的距離跨度______________;
B(-, )的距離跨度____________;
C(-3,-2)的距離跨度____________;
②根據(jù)①中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________.
(2)如圖2,在平面直角坐標系xOy中,圖形G2為以D(-1,0)為圓心,2為半徑的圓,直線y=k(x-1)上存在到G2的距離跨度為2的點,求k的取值范圍.
(3)如圖3,在平面直角坐標系xOy中,射線OP:y=x(x≥0),⊙E是以3為半徑的圓,且圓心E在x軸上運動,若射線OP上存在點到⊙E的距離跨度為2,求出圓心E的橫坐標xE的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“一帶一路”國際合作高峰論壇于2017年5月14日至15日在北京召開,“一帶”指的是“絲綢之路經濟帶”,“一路”指的是“21”.“一帶一路”沿線大多是新興經濟體和發(fā)展中國家,經濟總量約210 000億美元,將“210 000億”用科學記數(shù)法表示應為( 。
A. 21×104億B. 2.1×104億C. 2.1×105億D. 0.21×106億
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解九年級學生的身高情況,隨機抽取了部分學生的身高進行調查,利用所得數(shù)據(jù)繪成如下不完整的統(tǒng)計表和頻數(shù)分布直方圖,根據(jù)提供的信息解答下列問題:
身高分組() | 頻數(shù) | 百分比 |
5 | ||
15 | ||
14 | ||
6 | ||
總計 |
(1)______.
(2)樣本中位數(shù)所在組別為______.
(3)通過計算補全頻數(shù)分布直方圖;
(4)該校九年級共有300名學生,估計身高不低于的學生有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某興趣小組用無人機進行航拍測高,無人機從1號樓和2號樓的地面正中間B點垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____米(結果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,BC=10,tan∠ABC=,點O是AB邊上動點,以O為圓心,OB為半徑的⊙O與邊BC的另一交點為D,過點D作AB的垂線,交⊙O于點E,聯(lián)結BE、AE
(1)如圖(1),當AE∥BC時,求⊙O的半徑長;
(2)設BO=x,AE=y,求y關于x的函數(shù)關系式,并寫出定義域;
(3)若以A為圓心的⊙A與⊙O有公共點D、E,當⊙A恰好也過點C時,求DE的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com