【題目】如圖,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD≌△ACE,需要添加一個條件,某學習小組在討論這個條件時給出了如下幾種方案: ①AD=AE;②BD=CE;③BE=CD;④∠BAD=∠CAE,其中可行的有(

A.1種
B.2種
C.3種
D.4種

【答案】D
【解析】解:∵在△ABC中,AB=AC, ∴∠B=∠C,
當①AD=AE時,
∴∠ADE=∠AED,
∵∠ADE=∠B+∠BAD,∠AED=∠C+∠CAE,
∴∠BAD=∠CAE,
然后根據(jù)SAS或ASA或AAS可判定△ABD≌△ACE;
當②BD=CE時,根據(jù)SAS可判定△ABD≌△ACE;
當③BE=CD時,
∴BE﹣DE=CD﹣DE,
即BD=CE,根據(jù)SAS可判定△ABD≌△ACE;
當④∠BAD=∠CAE時,根據(jù)ASA可判定△ABD≌△ACE.
綜上所述①②③④均可判定△ABD≌△ACE.
故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4

(1)求經(jīng)過A、B、C三點的拋物線的解析式;

(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;

(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰△ABC中,∠A=80°,∠B和∠C的平分線相交于點O
(1)連接OA,求∠OAC的度數(shù);
(2)求:∠BOC。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若兩個相似三角形的面積比為1:4,則這兩個相似三角形的周長比是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,拋物線經(jīng)過A(﹣4,0),B(0,4)兩點,與x軸交于另一點C,直線y=x+5與x軸交于點D,與y軸交于點E.

(1)求拋物線的解析式;

(2)點P是第二象限拋物線上的一個動點,連接EP,過點E作EP的垂線l,在l上截取線段EF,使EF=EP,且點F在第一象限,過點F作FMx軸于點M,設(shè)點P的橫坐標為t,線段FM的長度為d,求d與t之間的函數(shù)關(guān)系式(不要求寫出自變量t的取值范圍);

(3)在(2)的條件下,過點E作EHED交MF的延長線于點H,連接DH,點G為DH的中點,當直線PG經(jīng)過AC的中點Q時,求點F的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形ABD和等邊三角形CBD的邊長均為a,現(xiàn)把它們拼合起來,E是AD上異于A、D兩點的一動點,F(xiàn)是CD上一動點,滿足AE+CF=a.則△BEF的形狀如何?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發(fā)以2cm/s的速度沿A→D→C運動,點P從點A出發(fā)的同時點Q從點C出發(fā),以1cm/s的速度向點B運動,當點P到達點C時,點Q也停止運動.設(shè)點P,Q運動的時間為t秒.

(1)從運動開始,當t取何值時,PQ∥CD?

(2)從運動開始,當t取何值時,△PQC為直角三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求證:不論k為何值時,關(guān)于x的一元二次方程x2+k2x+k4)=0有兩個不相等的實數(shù)根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校進行書法比賽,有39名同學參加預(yù)賽,只能有19名同學參加決賽,他們預(yù)賽的成績各不相同,其中一名同學想知道自己能否進入決賽,不僅要了解自己的預(yù)賽成績,還要了解這39名同學預(yù)賽成績的( 。
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)

查看答案和解析>>

同步練習冊答案