如圖所示,山坡上有一棵與水平面垂直的大樹,一場臺(tái)風(fēng)過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面.已知山坡的坡角∠AEF=23°,量得樹干傾斜角∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=4m
(1)求∠CAE的度數(shù);
(2)求這棵大樹折斷前的高度?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):,,).
(1)75°;(2)10m
【解析】
試題分析:(1)如果延長BA交EF于點(diǎn)G,那么BG⊥EF,∠CAE=180°-∠BAC-∠EAG,∠BAC的度數(shù)以及確定,只要求出∠GAE即可.直角三角形GAE中∠E的度數(shù)已知,那么∠EAG的度數(shù)就能求出來了,∠CAE便可求出.
(2)求樹折斷前的高度,就是求AC和CD的長,如果過點(diǎn)A作AH⊥CD,垂足為H.有∠CDA=60°,通過構(gòu)筑的直角三角形AHD和ACH便可求出AD、CD的值.
(1)延長BA交EF于點(diǎn)G
在Rt△AGE中,∠E=23°,
∴∠GAE=67°.
又∵∠BAC=38°,
∴∠CAE=180°-67°-38°=75°.
(2)作AH⊥CD,垂足為H.
∵AD=4,∠HAD=30°
∴HD=2,AH=2
∠CAH=45°
∴CH=2
∴AC=2
∴AB=AC+CD=2+2+2=10.210(米).
答:這棵大樹折斷前高約10米.
考點(diǎn):解直角三角形的應(yīng)用
點(diǎn)評(píng):本題是將實(shí)際問題轉(zhuǎn)化為直角三角形中的數(shù)學(xué)問題,可通過作輔助線構(gòu)造直角三角形,再把條件和問題轉(zhuǎn)化到這個(gè)直角三角形中,使問題解決.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
2 |
3 |
6 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012屆江蘇省無錫市華仕初中中考模擬(5)數(shù)學(xué)卷(帶解析) 題型:解答題
如圖所示,山坡上有一棵與水平面垂直的大樹,一場臺(tái)風(fēng)過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面.已知山坡的坡角,量得樹干傾斜角,大樹被折斷部分和坡面所成的角.
(1)求的度數(shù);
(2)求這棵大樹折斷前的高度?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):,,).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013屆江蘇省無錫市新區(qū)第一實(shí)驗(yàn)學(xué)校九年級(jí)下學(xué)期期中考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖所示,山坡上有一棵與水平面垂直的大樹,一場臺(tái)風(fēng)過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面.已知山坡的坡角∠AEF=23°,量得樹干傾斜角∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°,AD=4m
(1)求∠CAE的度數(shù);
(2)求這棵大樹折斷前的高度?(結(jié)果精確到個(gè)位,參考數(shù)據(jù):,,).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com