【題目】如圖所示,左邊的正方形與右邊的扇形面積相等,扇形的半徑和正方形的邊長都是2cm,則此扇形的弧長為( )cm.
A.4
B.4π
C.8
D.8﹣π
【答案】A
【解析】解:設(shè)扇形的圓心角為n.
由題意 =4,
∴n= ,
∴扇形的弧長為= =4cm,
故A符合題意.
所以答案是:A.
【考點(diǎn)精析】本題主要考查了正方形的性質(zhì)和弧長計(jì)算公式的相關(guān)知識(shí)點(diǎn),需要掌握正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形;若設(shè)⊙O半徑為R,n°的圓心角所對(duì)的弧長為l,則l=nπr/180;注意:在應(yīng)用弧長公式進(jìn)行計(jì)算時(shí),要注意公式中n的意義.n表示1°圓心角的倍數(shù),它是不帶單位的才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”假日期間,某網(wǎng)店為了促銷,設(shè)計(jì)了一種抽獎(jiǎng)送積分活動(dòng),在該網(wǎng)店網(wǎng)頁上顯示如圖所示的圓形轉(zhuǎn)盤,轉(zhuǎn)盤被均等的分成四份,四個(gè)扇形上分別標(biāo)有“謝謝惠顧”、“10分”、“20分”、“40分”字樣.參與抽獎(jiǎng)的顧客只需用鼠標(biāo)點(diǎn)擊轉(zhuǎn)盤,指針就會(huì)在轉(zhuǎn)動(dòng)的過程中隨機(jī)的停在某個(gè)扇形區(qū)域,指針指向扇形上的積分就是顧客獲得的獎(jiǎng)勵(lì)積分,凡是在活動(dòng)期間下單的顧客,均可獲得兩次抽獎(jiǎng)機(jī)會(huì),求兩次抽獎(jiǎng)?lì)櫩瞳@得的總積分不低于30分的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育彩票經(jīng)銷商計(jì)劃用4500元從省體彩中心購進(jìn)彩票20捆,已知體彩中心有、、三種不同價(jià)格的彩票,進(jìn)價(jià)分別是彩票每捆150元,彩票每捆200元,彩票每捆250元.
(1)若經(jīng)銷商同時(shí)購進(jìn)兩種不同型號(hào)的彩票20捆,剛好用去4500元,請你幫助設(shè)計(jì)進(jìn)票方案;
(2)若銷售型彩票每捆獲手續(xù)費(fèi)20元,型彩票每捆獲手續(xù)費(fèi)30元,型彩票每捆獲手續(xù)費(fèi)50元.在問題(1)設(shè)計(jì)的購進(jìn)兩種彩票的方案中,為使銷售完時(shí)獲得的手續(xù)費(fèi)最多,你選擇哪種進(jìn)票方案?
(3)若經(jīng)銷商準(zhǔn)備用4500元同時(shí)購進(jìn)、、三種彩票20捆,請你幫助經(jīng)銷商設(shè)計(jì)進(jìn)票方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線C1:y=ax2+bx+4與x軸交于A(﹣3,0),B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)M(﹣ ,5)是拋物線C1上一點(diǎn),拋物線C2與拋物線C1關(guān)于y軸對(duì)稱,點(diǎn)A、B、M關(guān)于y軸的對(duì)稱點(diǎn)分別為點(diǎn)A′、B′、M′.
(1)求拋物線C1的解析式;
(2)過點(diǎn)M′作M′E⊥x軸于點(diǎn)E,交直線A′C于點(diǎn)D,在x軸上是否存在點(diǎn)P,使得以A′、D、P為頂點(diǎn)的三角形與△AB′C相似?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上, 點(diǎn)A的坐標(biāo)為(2,4).
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)A的對(duì)應(yīng)點(diǎn)坐標(biāo)A1 .
(2)畫出△A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的△A2B2C2,并寫出點(diǎn)A2的坐標(biāo)A2 .
(3)設(shè)BC邊上的高AD,則AD= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一水池有甲、乙、丙三個(gè)水管,其中甲、丙兩管為進(jìn)水管,乙管為出水管.單位時(shí)間內(nèi),甲管水流量最大,丙管水流量最。乳_甲、乙兩管,一段時(shí)間后,關(guān)閉乙管開丙管,又經(jīng)過一段時(shí)間,關(guān)閉甲管開乙管.則能正確反映水池蓄水量y(立方米)隨時(shí)間t(小時(shí))變化的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,平分,點(diǎn)、在射線、上,點(diǎn)是射線上的一個(gè)動(dòng)點(diǎn),連接交射線于點(diǎn),設(shè).
(1)如圖1,若DE//OB.
①的度數(shù)是________,當(dāng)時(shí),________;
②若,求的值;
(2)如圖2,若,是否存在這樣的的值,使得?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com