【題目】如圖,在中,,,動點從點出發(fā),沿運動,點在運動過程中速度始終為,以點為圓心,線段長為半徑作圓,設(shè)點的運動時間為,當個交點時,此時的值不可能是(

A. B. C. D.

【答案】B

【解析】

根據(jù)⊙C與△ABC3個交點,可知⊙CRtABC只有三個交點的半徑r只有2,一個是r=3,另一個是r=2.4(此時圓與斜邊AB相切),依此作答即可

C為圓心作半徑為r的圓,則與RtABC只有三個交點的半徑r只有2一個是r=3,另一個是r=2.4(此時圓與斜邊AB相切),其余情況都不能滿足與RtABC只有三個交點,所以以2.43為半徑做圓RtABC相交的點有6,t分別為2.4,3,4.8,6.6,99.6

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組在樓的頂部處測得該樓正前方旗桿的頂端的俯角為,在樓的底部處測得旗桿的頂端的仰角為,已知旗桿的高度為,根據(jù)測得的數(shù)據(jù),計算樓的高度(結(jié)果保留整數(shù)).

參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,對角線,相交于點,將直線繞點順時針旋轉(zhuǎn),分別交,于點,,下列說法不正確的是(

A. 當旋轉(zhuǎn)角為時,四邊形一定為平行四邊形

B. 在旋轉(zhuǎn)的過程中,線段總相等

C. 當旋轉(zhuǎn)角為時,四邊形一定為菱形

D. 當旋轉(zhuǎn)角為時,四邊形一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應(yīng)關(guān)系如圖所示,下列敘述正確的是(

A. 甲乙兩地相距1200千米

B. 快車的速度是80千米小時

C. 慢車的速度是60千米小時

D. 快車到達甲地時,慢車距離乙地100千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖△ABC中,∠A=96°,延長BCD,∠ABC∠ACD的平分線相交于點A1∠A1BC∠A1CD的平分線相交于點A2,依此類推,∠A4BC∠A4CD的平分線相交于點A5,∠A5的度數(shù)為(

A. 19.2° B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知半圓的直徑,在中,,,半圓的速度從左向右運動,在運動過程中,點始終在直線上.設(shè)運動時間為,當時,半圓的左側(cè),

為何值時,的一邊所在直線與半圓所在的圓相切?

的一邊所在直線與半圓所在的圓相切時,如果半圓與直線圍成的區(qū)域與三邊圍成的區(qū)域有重疊部分,求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,點OAC上,以OA為半徑的⊙OAB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.

(1)求證:直線DE⊙O的切線;

(2)若AB=5,BC=4,OA=1,求線段DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,ADBC邊上的高,AE是∠BAC的平分線,∠EAD=15°,∠B=40°

1)求∠C的度數(shù).

2)若:∠EAD=α,∠B=β,其余條件不變,直接寫出用含αβ的式子表示∠C的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣x﹣3.

(1)用配方法求函數(shù)圖象頂點坐標、對稱軸,并寫出圖象的開口方向;

(2)在所給網(wǎng)格中建立平面直角坐標系井直接畫出此函數(shù)的圖象

查看答案和解析>>

同步練習(xí)冊答案