【題目】已知 ,則化簡 的結(jié)果是( )
A.4
B.
C.
D.
【答案】A
【解析】當(dāng)x≥5時(shí), | x 3 | + | 5 x |=x-3-5+x=2x-8=2,則x=5,
此時(shí) =x-1+x-5=2x-6=10-6=4;
當(dāng)3<x<5時(shí), | x 3 | + | 5 x |=x-3+5-x=2,
此時(shí) =x-1+5-x=4;
當(dāng)x≤3時(shí), | x 3 | + | 5 x |=3-x+5-x=8-2x=2,則x=3,
此時(shí) =2+2=4.
故選A.
【考點(diǎn)精析】關(guān)于本題考查的二次根式的性質(zhì)與化簡,需要了解1、如果被開方數(shù)是分?jǐn)?shù)(包括小數(shù))或分式,先利用商的算數(shù)平方根的性質(zhì)把它寫成分式的形式,然后利用分母有理化進(jìn)行化簡.2、如果被開方數(shù)是整數(shù)或整式,先將他們分解因數(shù)或因式,然后把能開得盡方的因數(shù)或因式開出來才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種藥品原價(jià)為36元/盒,經(jīng)過連續(xù)兩次降價(jià)后售價(jià)為25元/盒.設(shè)平均每次降價(jià)的百分率為x,根據(jù)題意所列方程正確的是( )
A.36(1﹣x)2=36﹣25
B.36(1﹣2x)=25
C.36(1﹣x)2=25
D.36(1﹣x2)=25
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD//BC , AB=10,BC=6,AC=AD=8.
(1)求∠ACB的度數(shù);
(2)求CD邊的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖。
(1)畫圖-連線-寫依據(jù):
先分別完成以下畫圖(不要求尺規(guī)作圖),再與判斷四邊形DEMN形狀的相應(yīng)結(jié)論連線,并寫出判定依據(jù)(只將最后一步判定特殊平行四邊形的依據(jù)填在橫線上).
①如圖1,在矩形ABEN中,D為對角線的交點(diǎn),過點(diǎn)N畫直線NP∥DE , 過點(diǎn)E畫直線EQ∥DN , NP與EQ的交點(diǎn)為點(diǎn)M , 得到四邊形DEMN;
②如圖2,在菱形ABFG中,順次連接四邊AB , BF , FG , GA的中點(diǎn)D , E , M , N , 得到四邊形DEMN.
(2)請從圖1、圖2的結(jié)論中選擇一個(gè)進(jìn)行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】老師在黑板上畫了一條直線AB和AB外一點(diǎn)P,想過點(diǎn)P作兩條直線CD、EF,若CD∥AB,這時(shí)EF與AB的位置關(guān)系是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)角的補(bǔ)角為144°,那么這個(gè)角的余角是( )
A. 36° B. 44° C. 54° D. 126°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將方程x2-8x=10化為一元二次方程的一般形式,其中一次項(xiàng)系數(shù)、常數(shù)項(xiàng)分別是( )
A.-8、-10B.-8、10C.8、-10D.8、10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:
(1)23﹣17﹣(﹣7)+(﹣16);
(2)-5+6÷(-2)×;
(3)-36×;
(4)﹣23+|5﹣8|+24÷(﹣3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)定義運(yùn)算“★”,對于任意實(shí)數(shù)a、b,都有a★b=a2﹣3a+b.如:3★5=32﹣3×3+5,若x★2=6,試求實(shí)數(shù)x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com