【題目】ABC中,內(nèi)角AB、C的對邊分別為ab、c.若b2+c22b+4c5a2b2+c2bc,則ABC的面積為( 。

A.B.C.D.

【答案】B

【解析】

先用配方法對b2+c2=2b+4c-5變形配方,從而求得b,c的值,再將其代入a2=b2+c2-bc,求出a,再由勾股定理的判定定理得出△ABC為直角三角形,從而其面積易得.

b2+c22b+4c5

∴(b22b+1+c24c+4)=0

∴(b12+c220,

b10,c20

b1,c2

又∵a2b2+c2bc,

a21+423

(舍)

,

∴△ABC是以1為直角邊的直角三角形,

∴△ABC的面積為:,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從點看一山坡上的電線桿,觀測點的仰角是,向前走到達點, 測得頂端點和桿底端點的仰角分別是,則該電線桿的高度(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小文同學(xué)統(tǒng)計了某棟居民樓中全體居民每周使用手機支付的次數(shù),并繪制了直方圖.根據(jù)圖中信息,下列說法錯誤的是( 。

A.這棟居民樓共有居民125

B.每周使用手機支付次數(shù)為2835次的人數(shù)最多

C.有的人每周使用手機支付的次數(shù)在3542

D.每周使用手機支付不超過21次的有15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形的邊長為3,點分別在射線,上運動,且.連接,作所在直線于點,連接

1)如圖1,若點的中點,之間的數(shù)量關(guān)系是______

2)如圖2,當點邊上且不是的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;

3)如圖3,當點,分別在射線上運動時,連接,過點作直線的垂線,交直線于點,連接,求線段長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,上一動點,點從點以1個單位/秒的速度向點運動,遠動到點即停止,經(jīng)過點作,交于點,以為一邊在一側(cè)作正方形,在點運動過程中,設(shè)正方形的重疊面積為,運動時間為秒,如圖2的函數(shù)圖象.

1)求的長;

2)求的值;

3)求的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工藝品店購進A,B兩種工藝品,已知這兩種工藝品的單價之和為200元,購進2A種工藝品和3B種工藝品需花費520元.

1)求A,B兩種工藝品的單價;

2)該店主欲用9600元用于進貨,且最多購進A種工藝品36個,B種工藝品的數(shù)量不超過A種工藝品的2倍,則共有幾種進貨方案?

3)已知售出一個A種工藝品可獲利10元,售出一個B種工藝品可獲利18元,該店主決定每售出一個B種工藝品,為希望工程捐款m元,在(2)的條件下,若AB兩種工藝品全部售出后所有方案獲利均相同,則m的值是多少?此時店主可獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:關(guān)于x的方程

(1)求證:m取任何值時,方程總有實根.

(2)若二次函數(shù)的圖像關(guān)于y軸對稱.

a、求二次函數(shù)的解析式

b、已知一次函數(shù),證明:在實數(shù)范圍內(nèi),對于同一x值,這兩個函數(shù)所對應(yīng)的函數(shù)值均成立.

(3)在(2)的條件下,若二次函數(shù)的象經(jīng)過(-5,0),且在實數(shù)范圍內(nèi),對于x的同一個值,這三個函數(shù)所對應(yīng)的函數(shù)值均成立,求二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位運動員在相同條件下各射擊次,成績?nèi)缦?/span>: :; :根據(jù)上述信息,下列結(jié)論錯誤的是(

A.甲、乙的眾數(shù)分別是B.甲、乙的中位數(shù)分別是

C.乙的成績比較穩(wěn)定D.甲、乙的平均數(shù)分別是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,ACBC4,P是△ABC的高CD上一個動點,以B點為旋轉(zhuǎn)中心把線段BP逆時針旋轉(zhuǎn)45°得到BP′,連接DP′,則DP′的最小值是( 。

A.2-2B.42C.2D.-1

查看答案和解析>>

同步練習(xí)冊答案