(2006•曲靖)如圖,從⊙O外一點(diǎn)A作⊙O的切線AB、AC,切點(diǎn)分別為B、C,且⊙O直徑BD=6,連接CD、AO.
(1)求證:CD∥AO;
(2)設(shè)CD=x,AO=y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若AO+CD=11,求AB的長(zhǎng).

【答案】分析:(1)欲證CD∥AO,根據(jù)平行線的判斷,證明∠DCB=∠OEB即可;
(2)由題可知求y與x之間的函數(shù)關(guān)系式,可以通過△BDC∽△AOB的比例關(guān)系式得出;
(3)求AB的長(zhǎng),因?yàn)锳B是⊙O的切線,可先求OA,OB的長(zhǎng).AO+CD=11結(jié)合(2),解方程組并且檢驗(yàn),從而求解.
解答:(1)證明:連接BC交OA于E點(diǎn),
∵AB、AC是⊙O的切線,
∴AB=AC,∠1=∠2.
∴AE⊥BC.
∴∠OEB=90°.
∵BD是⊙O的直徑,
∴∠DCB=90°.
∴∠DCB=∠OEB.
∴CD∥AO.

(2)解:∵CD∥AO,
∴∠3=∠4.
∵AB是⊙O的切線,DB是直徑,
∴∠DCB=∠ABO=90°.
∴△BDC∽△AOB.
=
=
∴y=
∴0<x<6.

(3)解:由已知和(2)知:,(8分)
把x、y看作方程z2-11z+18=0的兩根,
解這個(gè)方程得z=2或z=9,
(舍去).
∴AB===
點(diǎn)評(píng):本題綜合考查的是平行線的判斷,切線長(zhǎng)定理,相似三角形,勾股定理及解方程組的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對(duì)稱,求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動(dòng)點(diǎn)(B不與A、C重合),以AC為對(duì)角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時(shí),平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省煙臺(tái)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對(duì)稱,求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動(dòng)點(diǎn)(B不與A、C重合),以AC為對(duì)角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時(shí),平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年云南省玉溪市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對(duì)稱,求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動(dòng)點(diǎn)(B不與A、C重合),以AC為對(duì)角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時(shí),平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年云南省曲靖市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•曲靖)如圖,已知拋物線l1:y=x2-4的圖象與x有交于A、C兩點(diǎn),
(1)若拋物線l2與l1關(guān)于x軸對(duì)稱,求l2的解析式;
(2)若點(diǎn)B是拋物線l1上的一動(dòng)點(diǎn)(B不與A、C重合),以AC為對(duì)角線,A、B、C三點(diǎn)為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)定為D,求證:點(diǎn)D在l2上;
(3)探索:當(dāng)點(diǎn)B分別位于l1在x軸上、下兩部分的圖象上時(shí),平行四邊形ABCD的面積是否存在最大值和最小值?若存在,判斷它是何種特殊平行四邊形,并求出它的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案