已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD、BC于點(diǎn)E、F,垂足為O.
(1)如圖1,連接AF、CE.求證四邊形AFCE為菱形,并求AF的長;
(2)如圖2,動點(diǎn)P、Q分別從A、C兩點(diǎn)同時出發(fā),沿△AFB和△CDE各邊勻速運(yùn)動一周.即點(diǎn)P自A→F→B→A停止,點(diǎn)Q自C→D→E→C停止.在運(yùn)動過程中,
①已知點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒,當(dāng)A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,求t的值.
②若點(diǎn)P、Q的運(yùn)動路程分別為a、b(單位:cm,ab≠0),已知A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,求a與b滿足的數(shù)量關(guān)系式.
解:(1)①∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠CAD=∠ACB,∠AEF=∠CFE,
∵EF垂直平分AC,垂足為O,
∴OA=OC,
∴△AOE≌△COF,
∴OE=OF,
∴四邊形AFCE為平行四邊形,
又∵EF⊥AC,
∴四邊形AFCE為菱形,
②設(shè)菱形的邊長AF=CF=xcm,則BF=(8﹣x)cm,
在Rt△ABF中,AB=4cm,
由勾股定理得42+(8﹣x)2=x2,
解得x=5,
∴AF=5cm.
(2)①顯然當(dāng)P點(diǎn)在AF上時,Q點(diǎn)在CD上,此時A、C、P、Q四點(diǎn)不可能構(gòu)成平行四邊形;
同理P點(diǎn)在AB上時,Q點(diǎn)在DE或CE上或P在BF,Q在CD時不構(gòu)成平行四邊形,也不能構(gòu)成平行四邊形.
因此只有當(dāng)P點(diǎn)在BF上、Q點(diǎn)在ED上時,才能構(gòu)成平行四邊形,
∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,PC=QA,
∵點(diǎn)P的速度為每秒5cm,點(diǎn)Q的速度為每秒4cm,運(yùn)動時間為t秒,
∴PC=5t,QA=CD+AD﹣4t=12﹣4t,即QA=12﹣4t,
∴5t=12﹣4t,
解得,
∴以A、C、P、Q四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,秒.
②由題意得,四邊形APCQ是平行四邊形時,點(diǎn)P、Q在互相平行的對應(yīng)邊上.
分三種情況:
i)如圖1,當(dāng)P點(diǎn)在AF上、Q點(diǎn)在CE上時,AP=CQ,即a=12﹣b,得a+b=12;
ii)如圖2,當(dāng)P點(diǎn)在BF上、Q點(diǎn)在DE上時,AQ=CP,即12﹣b=a,得a+b=12;
iii)如圖3,當(dāng)P點(diǎn)在AB上、Q點(diǎn)在CD上時,AP=CQ,即12﹣a=b,得a+b=12.
綜上所述,a與b滿足的數(shù)量關(guān)系式是a+b=12(ab≠0).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
甲、乙、丙、丁四位選手各10次射擊成績的方差如下表:
選手 | 甲 | 乙 | 丙 | 丁 |
方差(環(huán)2) | 0.035 | 0.015 | 0.025 | 0.027 |
則這四人中成績發(fā)揮最穩(wěn)定的是( )
A.甲 B.乙 C.丙 D.丁
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,已知D為△ABC邊BC延長線上一點(diǎn),DF⊥AB于F交AC于E,∠A=35°,∠D=50°,求∠ACD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
4 解:∵四邊形ABCD是菱形,
∴AO=AC=3,DO=BD=2,AC⊥BD,
在Rt△AOD中,AD==,
∴菱形ABCD的周長為4.
故答案為:4.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
小明和爸爸媽媽三人玩蹺蹺板.三人的體重一共為150千克,爸爸坐在蹺蹺板的一端,體重只有媽媽一半的小明和媽媽一同坐在蹺蹺板的另一端,這時爸爸那端仍然著地.那么小明的體重應(yīng)小于()
A. 49千克 B. 50千克 C. 24千克 D. 25千克
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,AD∥BC,∠ABC的角平分線BP與∠BAD的角平分線AP相交于點(diǎn)P,作PE⊥AB于點(diǎn)E.若PE=2,則兩平行線AD與BC間的距離為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
發(fā)現(xiàn)下列幾組數(shù)據(jù)能作為三角形的邊:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作為直角三角形的三邊長的有()
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com