【題目】如圖,矩形ABCD中,EAC的中點,點A、Bx軸上.若函數(shù) )的圖像過DE兩點,則矩形ABCD的面積為______

【答案】16

【解析】分析:過EEFABF,由三角形中位線定理可得AD=2EF,設(shè)點D的橫坐標(biāo)為m,D點坐標(biāo)為(m,),得出AD=,即可得出EF=,根據(jù)圖象上的坐標(biāo)特征得出E的橫坐標(biāo)為2m,繼而得出AB=2m,然后根據(jù)矩形的面積公式即可求得.

詳解:過EEFABF,

∵點E是矩形ABCD對角線的交點,

AE=CE,

EFABC的中位線,

AD=2EF,

設(shè)點D的橫坐標(biāo)為m,且點D在反比例函數(shù)y=(x>0)上,

D點坐標(biāo)為(m,),

AD=

EF=,

E(2m,),

AF=m,

AB=2m,

∴矩形ABCD的面積=2m=16,

故答案為16.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為2, 邊在軸上, 的中點與原點重合,過定點與動點的直線記作.

1)若的解析式為,判斷此時點是否在直線上,并說明理由;

2)當(dāng)直線邊有公共點時,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】聰聰參加我市電視臺組織的“陽光杯”智力競答節(jié)目,答對最后兩道單選題就順利通關(guān),第一道單選題有個選項,第二道單選題有4個選項,這兩道題聰聰都不會,不過聰聰還有兩個“求助”可以用(使用“求助”一次可以讓主持人去掉其中一題的一個錯誤選項).

(1)如果聰聰兩次“求助”都在第一道題中使用,那么聰聰通關(guān)的概率是   

(2)如果聰聰將每道題各用一次“求助”,請用樹狀圖或者列表來分析他順利通關(guān)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】20191214日,中國教育學(xué)會第32次學(xué)術(shù)年會在山東濟南召開,某校選派16名教師前往參會,準(zhǔn)備用一輛七座汽車(除司機外限載6人,從學(xué)校出發(fā)),送16位教師去高鐵站與機場,其中11位教師準(zhǔn)備一起到學(xué)校正東方向25千米處的機場,另外5位教師準(zhǔn)備一起到學(xué)校正東方向15千米處的高鐵站,其中去機場的老師中有6人因工作需要需先趕去機場,已知這輛汽車的平均速度為45千米/小時,教師步行的平均速度為5千米/小時.(注:不計教師上、下車時間,教師上車后,中途不下車,汽車到達(dá)目的地后立即沿原路返回)

1)求汽車送第一批教師到達(dá)機場所用的時間.

2)若只有這輛汽車送這16位教師去目的地后返回學(xué)校,請設(shè)計一種方案使該車所用總時間最短,并求出這個最短時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于⊙P及一個矩形給出如下定義:如果⊙P上存在到此矩形四個頂點距離都相等的點,那么稱⊙P是該矩形的“等距圓”.如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的頂點A的坐標(biāo)為(,),頂點C、Dx軸上,且OC=OD.

(1)當(dāng)⊙P的半徑為4時,

①在P1),P2,),P3,)中可以成為矩形ABCD的“等距圓”的圓心的是 ;

②如果點P在直線上,且⊙P是矩形ABCD的“等距圓”,求點P的坐標(biāo);

(2)已知點P軸上,且⊙P是矩形ABCD的“等距圓”,如果⊙P與直線AD沒有公共點,直接寫出點P的縱坐標(biāo)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)教育局為了解今年九年級學(xué)生體育測試情況,隨機抽查了某班學(xué)生的體育測試成績?yōu)闃颖荆?/span>A、BC、D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下的統(tǒng)計圖,請你結(jié)合圖中所給信息解答下列問題:

說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下

1)樣本中D級的學(xué)生人數(shù)占全班學(xué)生人數(shù)的百分比是 ;

2)扇形統(tǒng)計圖中A級所在的扇形的圓心角度數(shù)是 ;

3)請把條形統(tǒng)計圖補充完整;

4)若該校九年級有500名學(xué)生,請你用此樣本估計體育測試中A級和B級的學(xué)生人數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示.已知箱體長AB=50cm,拉桿的伸長距離最大時可達(dá)35cm,點AB,C在同一條直線上.在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面MN相切于點D.在拉桿伸長至最大的情況下,當(dāng)點B距離水平地面38cm時,點C到水平地面的距離CE為59cm.

設(shè)AFMN

(1)求⊙A的半徑長;

(2)當(dāng)人的手自然下垂拉旅行箱時,人感到較為舒服.某人將手自然下垂在C端拉旅行箱時,CE為80cm,=64°.求此時拉桿BC的伸長距離.(精確到1cm,參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點A順時針旋轉(zhuǎn)得到ADE(點BC的對應(yīng)點分別是D,E),當(dāng)點EBC邊上時,連接BD,若∠ABC30°,∠BDE10°,求∠EAC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A,B兩點在數(shù)軸上,點A表示的數(shù)為-10OB=3OA,點M以每秒3個單位長度的速度從點A向右運動.點N以每秒2個單位長度的速度從點O向右運動(點M、點N同時出發(fā))

1)數(shù)軸上點B對應(yīng)的數(shù)是______

2)經(jīng)過幾秒,點M、點N分別到原點O的距離相等?

3)當(dāng)點M運動到什么位置時,恰好使AM=2BN

查看答案和解析>>

同步練習(xí)冊答案