【題目】如圖,在△ABC(ABBC),AC=2BC,BC邊上的中線AD把△ABC的周長分成6040兩部分,則AC=______,AB=________

【答案】48 28

【解析】

根據(jù)AD是BC邊上的中線,可以得到BD=CD,設BD=CD=x,AB=y,則AC=4x;當△ACD的周長為60時,代入x、y的值,由周長公式即可求出AC與AB的值;當△ABD的周長為60時,同理可求出AC與AB的值,注意檢驗所得到的的答案是否滿足三角形的三邊關系.

因為AD是BC的中線,所以BD=CD,

設BD=CD=x,AB=y,則AC=2BC=4x,

存在兩種情況:

①AC+CD=60,AB+BD=40,

則4x+x=60,x+y=40,解得x=12,y=28,

即AC=4x=48,AB=28;

②AC+CD=40,AB+BD=60,

則4x+x=40,x+y=60,解得x=8,y=52,

即AC=4x=32,AB=52,BC=2x=16,

此時不符合三角形三邊關系定理;

綜上,AC=48,AB=28

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算題

122

3 (代入法) (4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】第十一屆中國鄭州國際園林博覽會于2017929日在鄭州航空港經(jīng)濟綜合實驗區(qū)開幕,共有園博園、雙湖中央公園、苑陵故城遺址公園三個園區(qū),三園作為我市新的熱門旅游勝地,吸引了眾多游客的目光,鄭州市某中學一班、二班的老師計劃組織本班學生于20171118日前往參觀游覽,按照園區(qū)規(guī)定教師需購買普通票,學生購買學生票,兩個班前往參觀的教師人數(shù)、學生人數(shù)、計劃購票總花費分別見如表:

班級

教師人數(shù)

學生人數(shù)

總的購票費用

一班

4

40

1840

二班

5

45

2100

每張普通票、學生票的票價分別為多少元?

為了節(jié)約費用,85名學生準備通過旅行社購買團體票,每張30元,9名教師準備參加20171116日由鄭州市總工會推出了“10元暢游園博園的活動,本次活動將為鄭州市工會會員送上2000張園博園的門票,并于111616:00、20:00兩個整點在微信平臺進行電子搶票每人1,搶到電子票的工會會員就可以花費10元購買園博園門票,已知這兩個班的9名教師都具有搶票資格若最終這9名教師、85名學生購買門票的總花費不能超過2900元,則至少需要幾名教師搶到“10元票”?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司共有三個部門,根據(jù)每個部門的員工人數(shù)和相應每人所創(chuàng)的年利潤繪制成如下的統(tǒng)計表和扇形圖.

各部門人數(shù)及每人所創(chuàng)年利潤統(tǒng)計表

部門

員工人數(shù)

每人所創(chuàng)的年利潤/萬元

A

5

10

B

8

C

5

(1)在扇形圖中,C部門所對應的圓心角的度數(shù)為___________;

在統(tǒng)計表中,___________,___________;

(2)求這個公司平均每人所創(chuàng)年利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線

求拋物線的對稱軸;

無論a為何值,拋物線都經(jīng)過兩個定點,求這兩個定點的坐標;

將拋物線沿中兩個定點所在直線翻折,得到拋物線,當的頂點到x軸的距離為1時,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在長方形ABCD中,AB=8cm,BC=12cm,EAB的中點,動點P在線段BC上以4cm/s的速度由點BC運動,同時,動點Q在線段CD上由點C向點D運動,設運動時間為ts).

1)當t=2時,求EBP的面積;

2)若動點Q以與動點P不同的速度運動,經(jīng)過多少秒,EBPCQP全等?此時點Q的速度是多少?

3)若動點Q以(2)中的速度從點C出發(fā),動點P以原來的速度從點B同時出發(fā),都逆時針沿長方形ABCD的四邊形運動,經(jīng)過多少秒,點P與點Q第一次在長方形ABCD的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,AB=AC,,D,E分別在AB,BC上,,FDE的延長線與AC的延長線的交點.

(1)求證:DE=EF

(2)判斷BDCF的數(shù)量關系,并說明理由;

(3)若,,BD的長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC,C = 90°,.DBC上一點,且到A,B兩點的距離相等.

(1)用直尺和圓規(guī),作出點D的位置(不寫作法,保留作圖痕跡);

(2)連結AD,若∠B = 35°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,AB,C三點的坐標分別為(﹣6,7),(﹣3,0),(0,3).

1)畫出三角形ABC,并求三角形ABC的面積;

2)將三角形ABC平移得到三角形A′B′C′,點C經(jīng)過平移后的對應點為C′5,4),畫出平移后的三角形A′B′C′,并寫出點A′,B′的坐標:A′________),B′________

3)已知點P(﹣3m)為三角形ABC內一點,將點P向右平移4個單位后,再向下平移6個單位得到點Qn,﹣3),則m________,n________

查看答案和解析>>

同步練習冊答案