已知拋物線y=
3
3
x2-
4
3
3
x+
3
與y軸交于點(diǎn)A,與x軸交于B、C兩點(diǎn)(C在B的左邊).
(1)過(guò)A、O、B三點(diǎn)作⊙M,求⊙M的半徑;
(2)點(diǎn)P為弧OAB上的動(dòng)點(diǎn),當(dāng)點(diǎn)P運(yùn)動(dòng)到何位置時(shí)△OPB的面積最大?求出此時(shí)點(diǎn)P的坐標(biāo)及△OPB的最大面積.
(1)∵拋物線y=
3
3
x2-
4
3
3
x+
3
與y軸交于點(diǎn)A,與x軸交于B、C兩點(diǎn)(C在B的左邊),
∴y=0時(shí),0=
3
3
x2-
4
3
3
x+
3
,
整理得出:x2-4x+3=0,
解得:x1=1,x2=3,
當(dāng)x=0,則y=
3
,
由題意可得:A(0,
3
),B(3,0),C(1,0),
∴OA=
3
,OB=3,
連接AB,∵∠AOB=90°,
∴AB為⊙M的直徑,
∴AB=2
3
,
∴⊙M的半徑為
3
;

(2)在△AOB中,∵OA=
3
,OB=3,∠AOB=90°,
∴tan∠OAB=
3
3
=
3
,
∴∠OAB=60°,
∵點(diǎn)P為弧OAB上的動(dòng)點(diǎn),
∴∠OPB=60°,
∵OB=3是定值,要使△OPB面積最大,只要使OB邊上的高最大,
即點(diǎn)P到OB邊的距離最大,
∴點(diǎn)P為為弧OAB的中點(diǎn),此時(shí)為△OPB為等邊三角形,
且邊長(zhǎng)為3,
過(guò)點(diǎn)P作PT⊥OB于點(diǎn)T,
根據(jù)題意得出:OT=
3
2
,PT=
3
3
2
,
∴P(
3
2
,
3
3
2
),△OPB的最大面積為:
1
2
×3×
3
3
2
=
9
3
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線y=-x2+mx+n經(jīng)過(guò)點(diǎn)A(1,0),B(6,0).
(1)求拋物線的解析式;
(2)拋物線與y軸交于點(diǎn)D,求△ABD的面積;
(3)當(dāng)y<0,直接寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的邊AB在x軸上,且AB=3,BC=2
3
,直線y=
3
x-2
3
經(jīng)過(guò)點(diǎn)C,交y軸于點(diǎn)G.
(1)點(diǎn)C、D的坐標(biāo)分別是C______,D______;
(2)求頂點(diǎn)在直線y=
3
x-2
3
上且經(jīng)過(guò)點(diǎn)C、D的拋物線的解析式;
(3)將(2)中的拋物線沿直線y=
3
x-2
3
平移,平移后的拋物線交y軸于點(diǎn)F,頂點(diǎn)為點(diǎn)E(頂點(diǎn)在y軸右側(cè)).平移后是否存在這樣的拋物線,使△EFG為等腰三角形?若存在,請(qǐng)求出此時(shí)拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=-
1
2
x2+bx+c的圖象經(jīng)過(guò)A(2,0),B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱(chēng)軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積和周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,矩形ABOC的邊BO在x軸的負(fù)半軸上,邊OC在y軸的正半軸上,且AB=1,OB=
3
,矩形ABOC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)60°后得到矩形EFOD.點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)F,點(diǎn)C的對(duì)應(yīng)點(diǎn)為點(diǎn)D,拋物線y=ax2+bx+c過(guò)點(diǎn)A,E,D.
(1)判斷點(diǎn)E是否在y軸上,并說(shuō)明理由;
(2)求拋物線的函數(shù)表達(dá)式;
(3)在x軸的上方是否存在點(diǎn)P,點(diǎn)Q,使以點(diǎn)O,B,P,Q為頂點(diǎn)的平行四邊形的面積是矩形ABOC面積的2倍,且點(diǎn)P在拋物線上?若存在,請(qǐng)求出點(diǎn)P,點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過(guò)點(diǎn)C(0,1),且與x軸交于不同的兩點(diǎn)A、B,若點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B在點(diǎn)A的右側(cè).
(1)c=______;
(2)求a的取值范圍;
(3)若過(guò)點(diǎn)C且平行于x軸的直線交該拋物線于另一點(diǎn)D,AD、BC交于點(diǎn)P,記△PCD的面積為S1,△PAB的面積為S2,求S1-S2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知四邊形ABCD是等腰梯形,A、B在x軸上,D在y軸上,ABCD,AD=BC=
17
,AB=5,CD=3,拋物線y=-x2+bx+c過(guò)A、B兩點(diǎn).
(1)求b、c;
(2)設(shè)M是x軸上方拋物線上的一動(dòng)點(diǎn),它到x軸與y軸的距離之和為d,求d的最大值;
(3)當(dāng)(2)中M點(diǎn)運(yùn)動(dòng)到使d取最大值時(shí),此時(shí)記點(diǎn)M為N,設(shè)線段AC與y軸交于點(diǎn)E,F(xiàn)為線段EC上一動(dòng)點(diǎn),求F到N點(diǎn)與到y(tǒng)軸的距離之和的最小值,并求此時(shí)F點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

蔬菜基地種植某種蔬菜,由市場(chǎng)行情分析可知,1月份到6月份這種蔬菜的市場(chǎng)售價(jià)p(元/千克)與上市時(shí)間x(月份)的關(guān)系為p=-1.5x+12,這種蔬菜每千克的種植成本y(元/千克)與上市時(shí)間x(月份)滿足一個(gè)函數(shù)關(guān)系,這個(gè)函數(shù)的圖象是拋物線一部分,如圖所示.
(1)若圖中拋物線經(jīng)過(guò)A、B兩點(diǎn),對(duì)稱(chēng)軸是直線x=6,寫(xiě)出它對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)由以上信息分析,哪個(gè)月上市出售這種蔬菜每千克的收益最大?最大值是多少?
(收益=市場(chǎng)售價(jià)-種植成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

隨著海峽兩岸交流日益增強(qiáng),通過(guò)“零關(guān)稅”進(jìn)入我市的一種臺(tái)灣水果,其進(jìn)貨成本是每噸0.5萬(wàn)元,這種水果市場(chǎng)上的銷(xiāo)售量y(噸)是每噸的銷(xiāo)售價(jià)x(萬(wàn)元)的一次函數(shù),且x=0.6時(shí),y=2.4;x=1時(shí),y=2.
(1)求出銷(xiāo)售量y(噸)與每噸的銷(xiāo)售價(jià)x(萬(wàn)元)之間的函數(shù)關(guān)系式;
(2)若銷(xiāo)售利潤(rùn)為w(萬(wàn)元),請(qǐng)寫(xiě)出w與x之間的函數(shù)關(guān)系式,并求出銷(xiāo)售價(jià)為每噸2萬(wàn)元時(shí)的銷(xiāo)售利潤(rùn).

查看答案和解析>>

同步練習(xí)冊(cè)答案