【題目】某賓館有若干間標準房,當標準房的價格為200元時,每天入住的房間數(shù)為60間,經(jīng)市場調(diào)查表明,該賓館每間標準房的價格在170~240元之間(含170元,240元)浮動時,每天入住的房間數(shù)(間)與每間標準房的價格(元)的數(shù)據(jù)如下表:

(元)

190

200

210

220

()

65

60

55

50

1)根據(jù)所給數(shù)據(jù)在坐標系中描出相應的點,并畫出圖象.

2)求關于的函數(shù)表達式、并寫出自變量的取值范圍.

3)設客房的日營業(yè)額為(元).若不考慮其他因素,問賓館標準房的價格定為多少元時.客房的日營業(yè)額最大?最大為多少元?

【答案】1)解:如圖所示見解析;(2;(3)當時,有最大值,最大值為12750.

【解析】

1)根據(jù)表中數(shù)據(jù)再平面直角坐標系中先描點、連線即可畫出圖像.2)設的函數(shù)表達式為,再從表中選兩個點代入函數(shù)解析式,得到一個關于、的二元一次方程組,解之即可得出答案,由題意即可求得自變量取值范圍.3)設日營業(yè)額為,由,再由二次函數(shù)圖像性質(zhì)即可求得答案.

1)解:如圖所示:

2)解:設

代入,

,解得

3)解:

∴對稱軸為直線

,

∴在范圍內(nèi),的增大而減。

故當時,有最大值,最大值為12750

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,PA與⊙O相切于點A,過點AABOP,垂足為C,交⊙O于點B.連接PB,AO,并延長AO交⊙O于點D,與PB的延長線交于點E.

(1)求證:PB是⊙O的切線;

(2)若OC=3,AC=4,求sinE的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一次函數(shù)y=﹣x6x軸,y軸分別交于點A,B將直線AB沿y軸正方向平移與反比例函數(shù)yx0)的圖象分別交于點C,D,連接BCx軸于點E,連接AC,已知BE3CE,且SABE27

1)求直線AC和反比例函數(shù)的解析式;

2)連接AD,求ACD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某高中學校為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調(diào)查,并根據(jù)調(diào)查結(jié)果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6種型號).

根據(jù)以上信息,解答下列問題:

1)該班共有多少名學生?其中穿175型校服的學生有多少?

2)在條形統(tǒng)計圖中,請把空缺部分補充完整.

3)在扇形統(tǒng)計圖中,請計算185型校服所對應的扇形圓心角的大。

4)求該班學生所穿校服型號的眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,對折矩形紙片,使重合,得到折痕,然后把再對折到,使點落在上的點處,若,則的長度為(

A.1B.C.D.25

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC為等邊三角形,點OAB邊上一點,且BO=2AO=4,將△ABC繞點O逆時針旋轉(zhuǎn)60°得△DEF,則圖中陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,直線交坐標軸于A、C兩點,拋物線A、C兩點.

1)求拋物線的解析式;

2)若點P為拋物線位于第三象限上一動點,連接PA,PC,試問△PAC是否存在最大值,若存在,請求出△APC取最大值以及點P的坐標,若不存在,請說明理由;

3)點M為拋物線上一點,點N為拋物線對稱軸上一點,若△NMC是以∠NMC為直角的等腰直角三角形,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB是⊙O的直徑,直線AE是⊙O的切線,CD平分∠ACB,若∠CAE=21°,則∠BFC的度數(shù)為( )

A.66°B.111°C.114°D.119°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,運載火箭從地面L處垂直向上發(fā)射,當火箭到達A點時,從位于地面R處的雷達測得AR的距離是40km,仰角是30°,n秒后,火箭到達B點,此時仰角是45°,則火箭在這n秒中上升的高度是_____km.

查看答案和解析>>

同步練習冊答案