如圖,在直角坐標系中,O為原點,拋物線y=x2+bx+3與x軸的負半軸交于點A,與y軸的正半軸交于點B,tan∠ABO=
1
3
,頂點為P.
(1)求拋物線的解析式;
(2)若拋物線向上或向下平移|k|個單位長度后經(jīng)過點C(-5,6),試求k的值及平移后拋物線的最小值;
(3)設平移后的拋物線與y軸相交于D,頂點為Q,點M是平移的拋物線上的一個動點.請?zhí)骄浚寒旤cM在何位置時,△MBD的面積是△MPQ面積的2倍求出此時點M的坐標.友情提示:拋物線y=ax2+bx+c(a≠0)的對稱軸是x=-
b
2a
,頂點坐標是(-
b
2a
,
4ac-b2
4a
)
(1)令x=0,則y=3.
∴B點坐標為(0,3),OB=3.
∵tan∠OAB=
OA
AB
=
OA
3
=
1
3
,
∴AO=1.
∴A點坐標為(-1,0).
∴0=(-1)2+b(-1)+3.
求得b=4.
∴所求的拋物線解析式為y=x2+4x+3.

(2)設平移后拋物線的解析式為y=x2+4x+3+k.
∵它經(jīng)過點(-5,6),
∴6=(-5)2+4(-5)+3+k.
∴k=-2.
∴平移后拋物線的解析式為y=x2+4x+3-2=x2+4x+1.
配方,得y=(x+2)2-3.
∵a=1>0,
∴平移后的拋物線的最小值是-3.

(3)由(2)可知,BD=PQ=2,對稱軸為x=-2.
又S△MBD=2S△MPQ,
∴BD邊上的高是PQ邊上的高的2倍.
設M點坐標為(m,n).
①當M點的對稱軸的左側(cè)時,則有0-m=2(-2-m).
∴m=-4.
∴n=(-4)2+4(-4)+1=1.
∴M(-4,1).
②當M點在對稱軸與y軸之間時,則有0-m=2[m-(-2)].
∴m=-
4
3

∴n=(-
4
3
2+4(-
4
3
)+1=-
23
9

∴M(-
4
3
,-
23
9
).
③當M點在y軸的右側(cè)時,則有m=2[(m-(-2)].
∴m=-4<0,不合題意,應舍去.
綜合上述,得所求的M點的坐標是(-4,1)或(-
4
3
,-
23
9
).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在平面直角坐標系xOy中,拋物線y=-x2-(m-1)x+m2-6交x軸負半軸于點A,交y軸正半軸于點B(0,3),頂點C位于第二象限,連接AB,AC,BC.
(1)求拋物線的解析式;
(2)點D是y軸正半軸上一點,且在B點上方,若∠DCB=∠CAB,請你猜想并證明CD與AC的位置關(guān)系;
(3)設與△AOB重合的△EFG從△AOB的位置出發(fā),沿x軸負方向平移t個單位長度(0<t≤3)時,△EFG與△ABC重疊部分的面積為S,求S與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

二次函數(shù)圖象過A、B、C三點,點A(-l,0),B(3,0),點C在y軸負半軸上,且OB=OC.
(1)求這個二次函數(shù)的解析式:
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象過點(1,5),并求出平移后圖象與y軸的交點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖:已知拋物線y=
1
4
x2+
3
2
x-4與x軸交于A,B兩點,與y軸交于點C,O為坐標原點.
(1)求A,B,C三點的坐標;
(2)已知矩形DEFG的一條邊DE在AB上,頂點F,G分別在線段BC,AC上,設OD=m,矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系式,并指出m的取值范圍;
(3)當矩形DEFG的面積S取最大值時,連接對角線DF并延長至點M,使FM=
2
5
DF.試探究此時點M是否在拋物線上,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知直線l:y=-x+2與y軸交于點A,拋物線y=(x-1)2+k經(jīng)過點A,其頂點為B,另一拋物線y=(x-h)2+2-h(h>1)的頂點為D,兩拋物線相交于點C.
(1)求點B的坐標,并說明點D在直線l上的理由;
(2)設交點C的橫坐標為m.
①交點C的縱坐標可以表示為:______或______,由此進一步探究m關(guān)于h的函數(shù)關(guān)系式;
②如圖2,若∠ACD=90°,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

為了美化校園環(huán)境,某中學準備在一塊空地(如圖,矩形ABCD,AB=10m,BC=20m)上進行綠化.中間的一塊(圖中四邊形EFGH)上種花,其他的四塊(圖中的四個Rt△)上鋪設草坪,并要求AE=AH=CF=CG.那么在滿足上述條件的所有設計中,是否存在一種設計,使得四邊形EFGH(中間種花的一塊)面積最大?若存在,請求出該設計中AE的長和四邊形EFGH的面積;若不存在,請說明理由!

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

某商場銷售某種品牌的純牛奶,已知進價為每箱40元,生產(chǎn)廠家要求每箱售價在40元至70元之間.市場調(diào)查發(fā)現(xiàn):若每箱以50元銷售,平均每天可銷售90箱,價格每降低1元,平均每天多銷售3箱,價格每升高l元,平均每天少銷售3箱.
(1)寫出平均每天銷售量y(箱)與每箱售價x(元)之間的函數(shù)關(guān)系式.(注明范圍)
(2)求出商場平均每天銷售這種牛奶的利潤W(元),與每箱牛奶的售價x(元)之間的二次函數(shù)關(guān)系式.(每箱的利潤=售價-進價)
(3)求出(2)中二次函數(shù)圖象的頂點坐標,并求當x=40,70時W的值.在給出的坐標系中畫出函數(shù)圖象的草圖.
(4)由函數(shù)圖象可以看出,當牛奶售價為多少時,平均每天的利潤最大?最大利潤為多少?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若二次函數(shù)y=kx2-2x-l與x軸有交點,則k的取值范圍是( 。
A.k>-1B.k≤1且k≠0C.k<-1D.k≥-1且k≠0

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知二次函數(shù)y=ax2+bx+c的部分圖象,由圖象可知關(guān)于x的一元二次方程ax2+bx+c=0的兩個根分別是______.

查看答案和解析>>

同步練習冊答案