【題目】圓內(nèi)接正三角形、正方形、正六邊形的邊長(zhǎng)之比為(  )

A.123B.1C.1D.無(wú)法確定

【答案】C

【解析】

根據(jù)題意畫(huà)出圖形,設(shè)出圓的半徑,再由正多邊形及直角三角形的性質(zhì)求解即可.

解:設(shè)圓的半徑為R,

如圖()

連接OB,過(guò)OODBCD,

則∠OBC=30°,BD=OBcos30°R,

BC=2BDR;

如圖(),

連接OB、OC,過(guò)OOEBCE,

則△OBE是等腰直角三角形,

2BE2=OB2,即BE,

BCR;

如圖(),

連接OA、OB,過(guò)OOGAB,

則△OAB是等邊三角形,

AG=OAcos60°RAB=2AG=R,

∴圓內(nèi)接正三角形、正方形、正六邊形的邊長(zhǎng)之比為RRR1

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:AB是⊙O的直徑,AC交⊙OG,EAG上一點(diǎn),D為△BCE內(nèi)心,BEADF,且∠DBE=BAD.

(1)求證:BC是⊙O的切線;

(2)求證:DF=DG;

(3)若∠ADG=45°,DF=1,則有兩個(gè)結(jié)論:①ADBD的值不變;②ADBD的值不變,其中有且只有一個(gè)結(jié)論正確,請(qǐng)選擇正確的結(jié)論,證明并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線x軸交于A-1,0),B3,0)兩點(diǎn),與y軸交于點(diǎn)C

(1)求該拋物線的解析式;

(2)如圖①,若點(diǎn)D是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m0m3),連接CD,BDBC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;

(3)若點(diǎn)N為拋物線對(duì)稱軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,C,MN為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BE平分ABC交AC于點(diǎn)E,過(guò)點(diǎn)E作EDBC交AB于點(diǎn)D.

(1)求證:AEBC=BDAC;

(2)如果=3,=2,DE=6,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖中,每個(gè)正方形有邊長(zhǎng)為1 的小正方形組成:

1) 觀察圖形,請(qǐng)?zhí)顚?xiě)下列表格:

正方形邊長(zhǎng)

1

3

5

7


n(奇數(shù))

黑色小正方形個(gè)數(shù)







正方形邊長(zhǎng)

2

4

6

8


n(偶數(shù))

黑色小正方形個(gè)數(shù)







2)在邊長(zhǎng)為nn≥1)的正方形中,設(shè)黑色小正方形的個(gè)數(shù)為P1,白色小正方形的個(gè)數(shù)為P2,問(wèn)是否存在偶數(shù)n,使P25P1?若存在,請(qǐng)寫(xiě)出n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,OD垂直弦AC于點(diǎn)E,且交O于點(diǎn)D,FBA延長(zhǎng)線上一點(diǎn),若∠CDB=BFD

1)求證:FDAC;

2)試判斷FDO的位置關(guān)系,并簡(jiǎn)要說(shuō)明理由;

3)若AB=10,AC=8,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:△ABC在正方形網(wǎng)格中.

1)請(qǐng)畫(huà)出△ABC繞著O逆時(shí)針旋轉(zhuǎn)90°后得到的△A1B1C1;

2)請(qǐng)畫(huà)出△ABC關(guān)于點(diǎn)O對(duì)稱的△A2B2C2;

3)在直線MN上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫(huà)出△PAB

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB12,C是線段AB上一點(diǎn),分別以AC、CB為邊在A的同側(cè)作等邊△ACP和等邊△CBQ,連接PQ,則PQ的最小值是(  )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后得到△AB′C′(點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)B′,點(diǎn)C的對(duì)應(yīng)點(diǎn)是點(diǎn)C′),連接CC′,若∠CC′B′=33°,則∠B的大小是(  )

A. 33° B. 45° C. 57° D. 78°

查看答案和解析>>

同步練習(xí)冊(cè)答案