在平面直角坐標(biāo)系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐上,且點(diǎn)A(0,2),點(diǎn)C(,0),如圖所示:拋物線經(jīng)過點(diǎn)B。
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使△ACP仍然是以AC為直角邊的等腰直角三角形?若存在,求所有點(diǎn)P的坐標(biāo);若不存在,請說明理由。
(1)(-3,1);(2)y=x2+x-2;(3)P1(1,-1)、P2(2,1).
解析試題分析:(1)根據(jù)題意,過點(diǎn)B作BD⊥x軸,垂足為D;根據(jù)角的互余的關(guān)系,易得B到x、y軸的距離,即B的坐標(biāo);
(2)根據(jù)拋物線過B點(diǎn)的坐標(biāo),可得a的值,進(jìn)而可得其解析式;
(3)首先假設(shè)存在,分A、C是直角頂點(diǎn)兩種情況討論,根據(jù)全等三角形的性質(zhì),可得答案.
試題解析:(1)過點(diǎn)B作BD⊥x軸,垂足為D,
∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,
∴∠BCD=∠CAO,
又∵∠BDC=∠COA=90°,CB=AC,
∴△BCD≌△CAO,
∴BD=OC=1,CD=OA=2,
∴點(diǎn)B的坐標(biāo)為(-3,1);
(2)拋物線y=ax2+ax-2經(jīng)過點(diǎn)B(-3,1),則得到1=9a-3a-2,
解得a=,
所以拋物線的解析式為y=x2+x-2;
(3)假設(shè)存在點(diǎn)P,使得△ACP仍然是以AC為直角邊的等腰直角三角形:
①若以點(diǎn)C為直角頂點(diǎn);則延長BC至點(diǎn)P1,使得P1C=BC,得到等腰直角三角形△ACP1,
過點(diǎn)P1作P1M⊥x軸,
∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,
∴△MP1C≌△DBC.
∴CM=CD=2,P1M=BD=1,可求得點(diǎn)P1(1,-1);
②若以點(diǎn)A為直角頂點(diǎn);
則過點(diǎn)A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,
過點(diǎn)P2作P2N⊥y軸,同理可證△AP2N≌△CAO,
∴NP2=OA=2,AN=OC=1,可求得點(diǎn)P2(2,1),
經(jīng)檢驗(yàn),點(diǎn)P1(1,-1)與點(diǎn)P2(2,1)都在拋物線y=x2+x-2上.
考點(diǎn): 二次函數(shù)綜合題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場經(jīng)營某種品牌的玩具,購進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場調(diào)查:在一段時(shí)間內(nèi),銷售單價(jià)是40元時(shí),銷售量是600件,而銷售單價(jià)每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價(jià)為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:
銷售單價(jià)(元) | x |
銷售量y(件) | |
銷售玩具獲得利潤w(元) | |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖在平面直角坐標(biāo)系內(nèi),以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A、B兩點(diǎn),開口向下的拋物線經(jīng)過A、B兩點(diǎn),且其頂點(diǎn)P在⊙C上。
(1)寫出A、B兩點(diǎn)的坐標(biāo);
(2)確定此拋物線的解析式;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
為鼓勵(lì)大學(xué)畢業(yè)生自主創(chuàng)業(yè),某市政府出臺了相關(guān)政策:由政府協(xié)調(diào),本市企業(yè)按成本價(jià)提供產(chǎn)品給大學(xué)畢業(yè)生自主銷售,成本價(jià)與出廠價(jià)之間的差價(jià)由政府承擔(dān).李明按照相關(guān)政策投資銷售本市生產(chǎn)的一種新型節(jié)能燈.已知這種節(jié)能燈的成本價(jià)為每件元,出廠價(jià)為每件元,每月銷售量(件)與銷售單價(jià)(元)之間的關(guān)系近似滿足一次函數(shù): .
(1)李明在開始創(chuàng)業(yè)的第一個(gè)月將銷售單價(jià)定為元,那么政府這個(gè)月為他承擔(dān)的總差價(jià)為多少元?
(2)設(shè)李明獲得的利潤為(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?
(3)物價(jià)部門規(guī)定,這種節(jié)能燈的銷售單價(jià)不得高于元.如果李明想要每月獲得的利潤不低于元,那么政府為他承擔(dān)的總差價(jià)最少為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
小趙投資銷售一種進(jìn)價(jià)為每件20元的護(hù)眼臺燈.銷售過程中發(fā)現(xiàn),當(dāng)月內(nèi)銷售單價(jià)不變,則月銷售量y(件)與銷售單價(jià)x(元)之間的關(guān)系可近似的看作一次函數(shù):.
(1)設(shè)小趙每月獲得利潤為w(元),當(dāng)銷售單價(jià)定為多少元時(shí),每月可獲得最大利潤?并求出最大利潤.
(2)如果小趙想要每月獲得的利潤不低于2000元,那么如何制定銷售單價(jià)才可以實(shí)現(xiàn)這一目標(biāo)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
拋物線y=-與y軸交于(0,3),
⑴求m的值;
⑵求拋物線與x軸的交點(diǎn)坐標(biāo)及頂點(diǎn)坐標(biāo);
⑶當(dāng)x取何值時(shí),拋物線在x軸上方?
⑷當(dāng)x取何值時(shí),y隨x的增大而增大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,二次函數(shù)的圖象過A(-1,-2)、B(1,0)兩點(diǎn).
(1)求此二次函數(shù)的解析式并畫出二次函數(shù)圖象;
(2)點(diǎn)P(t,0)是x軸上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線交直線AB于點(diǎn)M,交二次函數(shù)的圖象于點(diǎn)N.當(dāng)點(diǎn)M位于點(diǎn)N的上方時(shí),直接寫出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,等邊△ABC的邊長為4,E是邊BC上的動(dòng)點(diǎn),EH⊥AC于H,過E作EF∥AC,交線段AB于點(diǎn)F,在線段AC上取點(diǎn)P,使PE=EB.設(shè)EC=x(0<x≤2).
(1)請直接寫出圖中與線段EF相等的兩條線段(不再另外添加輔助線);
(2)Q是線段AC上的動(dòng)點(diǎn),當(dāng)四邊形EFPQ是平行四邊形時(shí),求平行四邊形EFPQ的面積(用含的代數(shù)式表示);
(3)當(dāng)(2)中 的平行四邊形EFPQ面積最大值時(shí),以E為圓心,r為半徑作圓,根據(jù)⊙E與此時(shí)平行四邊形EFPQ四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過B、C兩點(diǎn).
(1)求b,c的值.
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com