【題目】在第一象限內(nèi)作射線OC,與x軸的夾角為60°,在射線OC上取一點(diǎn)A,過點(diǎn)A作AH⊥x軸于點(diǎn)H,在拋物線y=x2(x>0)上取一點(diǎn)P,在y軸上取一點(diǎn)Q,使得以P,O,Q為頂點(diǎn)的三角形與△AOH全等,則符合條件的點(diǎn)A的坐標(biāo)是

【答案】( ,3)或( , )或( )或(2,2
【解析】解:①如圖1,當(dāng)∠POQ=∠OAH=30°,若以P,O,Q為頂點(diǎn)的三角形與△AOH全等,那么A、P重合;
∵∠AOH=60°,
∴直線OA:y= x,
聯(lián)立拋物線的解析式得: ,
解得:
故A( ,3);
②當(dāng)∠POQ=∠AOH=60°,此時(shí)△POQ≌△AOH,
易知∠POH=30°,則直線y= x,聯(lián)立拋物線的解析式,
得: ,
解得:
故P( , ),那么A( , );
③當(dāng)∠OPQ=90°,∠POQ=∠AOH=60°時(shí),此時(shí)△QOP≌△AOH;
易知∠POH=30°,則直線y= x,聯(lián)立拋物線的解析式,
得: ,
解得:
故P( , ),
∴OP= = ,QP= ,
∴OH=OP= ,AH=QP= ,
故A( , );
④當(dāng)∠OPQ=90°,∠POQ=∠OAH=30°,此時(shí)△OQP≌△AOH;
此時(shí)直線y= x,聯(lián)立拋物線的解析式,
得: ,
解得:
∴P( ,3),
∴QP=2,OP=2 ,
∴OH=QP=2,AH=OP=2 ,
故A(2,2 ).
綜上可知:符合條件的點(diǎn)A有四個(gè),分別為:( ,3)或( , )或( )或(2,2 ).
故答案為:( ,3)或( , )或( , )或(2,2 ).
由于兩三角形的對應(yīng)邊不能確定,故應(yīng)分四種情況進(jìn)行討論:
①∠POQ=∠OAH=30°,此時(shí)A、P重合,可聯(lián)立直線OA和拋物線的解析式,即可得A點(diǎn)坐標(biāo),由三角形的面積公式即可得出結(jié)論;
②∠POQ=∠AOH=60°,此時(shí)∠POH=30°,即直線OP:y= x,聯(lián)立拋物線的解析式可得P點(diǎn)坐標(biāo),進(jìn)而可求出OQ、PQ的長,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到點(diǎn)A的坐標(biāo),由三角形的面積公式即可得出結(jié)論;
③當(dāng)∠OPQ=90°,∠POQ=∠AOH=60°時(shí),此時(shí)△QOP≌△AOH,得到點(diǎn)A的坐標(biāo),由三角形的面積公式即可得出結(jié)論;
④當(dāng)∠OPQ=90°,∠POQ=∠OAH=30°,此時(shí)△OQP≌△AOH,得到點(diǎn)A的坐標(biāo),由三角形的面積公式即可得出結(jié)論.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣ x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對稱軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).

(1)求拋物線的表達(dá)式;
(2)在拋物線的對稱軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請說明理由;
(3)點(diǎn)E是線段BC上的一個(gè)動點(diǎn),過點(diǎn)E作x軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場銷售A、B兩種型號計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺30元、40. 商場銷售5A型號和1B型號計(jì)算器,可獲利潤76元;銷售6A型號和3B型號計(jì)算器,可獲利潤120.

(1)求商場銷售A、B兩種型號計(jì)算器的銷售價(jià)格分別是多少元?(利潤=銷售價(jià)格﹣進(jìn)貨價(jià)格)

(2)商場準(zhǔn)備用不多于2500元的資金購進(jìn)A、B兩種型號計(jì)算器共70臺,問最少需要購進(jìn)A型號的計(jì)算器多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△COD是△AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)40°后得到的圖形,若點(diǎn)C恰好落在AB上,且∠AOD的度數(shù)為90°,則∠B的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一根繩子長20米,用去15米,用去_______%,還剩_______%.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角是50,則這個(gè)三角形的底角是( )

A. 70 B. 20 C. 70或20 D. 40或140

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的三邊AB、BC、CA的長分別為40、50、60,其三條角平分線交于點(diǎn)O,則SABOSBCOSCAO等于 ( )

A. 1:2:3 B. 2:3:4 C. 3:4:5 D. 4:5:6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=﹣x2+mx+3與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)B的坐標(biāo)為(3,0)
(1)求m的值及拋物線的頂點(diǎn)坐標(biāo).
(2)點(diǎn)P是拋物線對稱軸l上的一個(gè)動點(diǎn),當(dāng)PA+PC的值最小時(shí),求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=AC,點(diǎn)D是直線BC上一點(diǎn)(不與B、C重合),以AD為一邊在AD的右側(cè)作ADE,使AD=AE,DAE=BAC,連接CE.

(1)如圖1,當(dāng)點(diǎn)D在線段BC上,如果∠BAC=90°,則∠BCE=  度;

(2)設(shè)∠BAC=α,BCE=β.

①如圖2,當(dāng)點(diǎn)D在線段BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當(dāng)點(diǎn)D在直線BC上移動,則α,β之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案