【題目】在平面直角坐標(biāo)系中,點(diǎn)A(﹣1,2)關(guān)于y軸的對(duì)稱點(diǎn)在( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,AB=AC=10,BC=12,D為底邊BC的中點(diǎn),以D為頂點(diǎn)的角∠PDQ=∠B.
(1)如圖1,若射線DQ經(jīng)過(guò)點(diǎn)A,DP交AC邊于點(diǎn)E,直接寫出與△CDE相似的三角形;
(2)如圖2,若射線DQ交AB于點(diǎn)F,DP交AC邊于點(diǎn)E,設(shè)AF=x,AE為y,試寫出y與x的函數(shù)關(guān)系式;(不要求寫出自變量的取值范圍)
(3)在(2)的條件下,連接EF,則△DEF與△CDE相似嗎?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若ΔABC的邊AB=8cm,周長(zhǎng)為18cm,當(dāng)邊BC=________cm時(shí),ΔABC為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題背景:
如圖1,在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分別是BC,CD上的點(diǎn),且∠EAF=60°,探究圖中線段BE,EF,FD之間的數(shù)量關(guān)系.
小王同學(xué)探究此問(wèn)題的方法是延長(zhǎng)FD到點(diǎn)G,使DG=BE,連結(jié)AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 ;
(2)探索延伸:
如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°,E,F分別是BC,CD上的點(diǎn),且∠EAF=∠BAD,上述結(jié)論是否仍然成立,并說(shuō)明理由;
(3)結(jié)論應(yīng)用:
如圖3,在某次軍事演習(xí)中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°的B處,并且兩艦艇到指揮中心的距離相等.接到行動(dòng)指令后,艦艇甲向正東方向以60海里/小時(shí)的速度前進(jìn),艦艇乙沿北偏東50°的方向以80海里/小時(shí)的速度前進(jìn),1.5小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá)E,F處,且兩艦艇與指揮中心O之間夾角∠EOF=70°,試求此時(shí)兩艦艇之間的距離.
(4)能力提高:
如圖4,等腰直角三角形ABC中,∠BAC=90°,AB=AC,點(diǎn)M,N在邊BC上,且∠MAN=45°.若BM=1,CN=3,試求出MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩條互相平行的河岸,在河岸一邊測(cè)得AB為20米,在另一邊測(cè)得CD為70米,用測(cè)角器測(cè)得∠ACD=30°,測(cè)得∠BDC=45°,求兩條河岸之間的距離.(, ≈1.7,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=6,BC=4,那么邊AC的長(zhǎng)可能是下列哪個(gè)值( )
A.11
B.5
C.2
D.1
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com