【題目】如圖,在邊長為6的正方形ABCD中,對角線AC、BD交于點(diǎn)O,E是BC的中點(diǎn),DE交AC于點(diǎn)F,則OF的長為 .
【答案】
【解析】解:過點(diǎn)E作EG⊥BD于點(diǎn)G,
∵四邊形ABCD是正方形,
∴∠GBE=45°,
∴△BEG是等腰直角三角形.
∵BE= BC=3,
∴ ,
∵BD= ,
∴DO= ,DE= - = ,
∵∠DOF=∠DGE =90°,∠ODF=∠GDE,
∴△DOF∽△DGE,
∴ ,
即 ,
∴ .
所以答案是: .
【考點(diǎn)精析】掌握相似三角形的判定與性質(zhì)是解答本題的根本,需要知道相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點(diǎn)D作△BCD的BC邊上的高DE, 易證△ABC≌△BDE,從而得到△BCD的面積為 .
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.
簡單應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行.本屆論壇期間,中國同30多個(gè)國家簽署經(jīng)貿(mào)合作協(xié)議.某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū).已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴(kuò)建部分中小學(xué),某縣計(jì)劃對A、B兩類學(xué)校進(jìn)行改擴(kuò)建,根據(jù)預(yù)算,改擴(kuò)建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴(kuò)建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.
(1)改擴(kuò)建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?
(2)該縣計(jì)劃改擴(kuò)建A、B兩類學(xué)校共10所,改擴(kuò)建資金由國家財(cái)政和地方財(cái)政共同承擔(dān).若國家財(cái)政撥付資金不超過11800萬元;地方財(cái)政投入資金不少于4000萬元,其中地方財(cái)政投入到A、B兩類學(xué)校的改擴(kuò)建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴(kuò)建方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為打造書香校園,計(jì)劃購進(jìn)甲、乙兩種規(guī)格的書柜放置新購進(jìn)的圖書,調(diào)查發(fā)現(xiàn),若購買甲種書柜3個(gè)、乙種書柜2個(gè),共需資金1020元;若購買甲種書柜4個(gè),乙種書柜3個(gè),共需資金1440元.
(1)甲、乙兩種書柜每個(gè)的價(jià)格分別是多少元?
(2)若該校計(jì)劃購進(jìn)這兩種規(guī)格的書柜共20個(gè),其中乙種書柜的數(shù)量不少于甲種書柜的數(shù)量,學(xué)校至多能夠提供資金4320元,請?jiān)O(shè)計(jì)幾種購買方案供這個(gè)學(xué)校選擇.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角梯形,,,過點(diǎn)作,垂足為點(diǎn),,,點(diǎn)是邊上的一動(dòng)點(diǎn),過作線段的垂直平分線,交于點(diǎn),并交射線于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)與點(diǎn)重合時(shí),求的長;
(2)設(shè),,求與的函數(shù)關(guān)系式,并寫出定義域;
(3)如圖2,聯(lián)結(jié),當(dāng)是等腰三角形時(shí),求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=120°,點(diǎn)C為平面內(nèi)一點(diǎn),作射線OC,射線OD平分∠BOC,射線OE平分∠AOD.
(1)若點(diǎn)C為∠AOB內(nèi)部一點(diǎn)且∠AOC=30°,依題意補(bǔ)全圖形,并求出∠EOC的度數(shù);
(2)若點(diǎn)C為∠AOB內(nèi)部一點(diǎn),∠AOC=α(0<α<120°)直接用含α的代數(shù)式表示∠EOC的度數(shù);
(3)若∠EOC=10°,請你直接寫出所有符合條件的∠AOC度數(shù)(0<∠AOC<180°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)O在AC上,以O(shè)A為半徑的⊙O交AB于點(diǎn)D,BD的垂直平分線交BC于點(diǎn)E,交BD于點(diǎn)F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是等邊△ABC邊AB上的一點(diǎn),且AD:DB=1:2,現(xiàn)將△ABC折疊,使點(diǎn)C與D重合,折痕為EF,點(diǎn)E,F(xiàn)分別在AC和BC上,則CE:CF=( 。
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com