【題目】如圖,四邊形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分別以點(diǎn)A,C為圓心,大于AC長(zhǎng)為半徑作弧,兩弧交于點(diǎn)E,射線BE交AD于點(diǎn)F,交AC于點(diǎn)O.若點(diǎn)O恰好是AC的中點(diǎn),則CD的長(zhǎng)為__.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校學(xué)生食堂共有座位個(gè),某天午餐時(shí),食堂中學(xué)生人數(shù)(人)與時(shí)間(分鐘)
變化的函數(shù)關(guān)系圖象如圖中的折線.
(1)試分別求出當(dāng)與時(shí),與的函數(shù)關(guān)系式;
(2)已知該校學(xué)生數(shù)有人,考慮到安全因素,學(xué)校決定對(duì)剩余名同學(xué)延時(shí)用餐,即等食堂空閑座位不少于個(gè)時(shí),再通知剩余名同學(xué)用餐.請(qǐng)結(jié)合圖象分析,這名學(xué)生至少要延時(shí)多少分鐘?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,二次函數(shù)圖像交軸于,交交軸于點(diǎn),是拋物線的頂點(diǎn),對(duì)稱(chēng)軸經(jīng)過(guò)軸上的點(diǎn).
(1)求二次函數(shù)關(guān)系式;
(2)對(duì)稱(chēng)軸與交于點(diǎn),點(diǎn)為對(duì)稱(chēng)軸上一動(dòng)點(diǎn).
①求的最小值及取得最小值時(shí)點(diǎn)的坐標(biāo);
②在①的條件下,把沿著軸向右平移個(gè)單位長(zhǎng)度時(shí),設(shè)與重疊部分面積記為,求與之間的函數(shù)表達(dá)式,并求出的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形中,,點(diǎn)是對(duì)角線上任意一點(diǎn)(不與、重合),點(diǎn)是的中點(diǎn),連接,過(guò)點(diǎn)作交直線于點(diǎn).
初步感知:當(dāng)點(diǎn)與點(diǎn)重合時(shí),比較: (選填“”、“”或“”).
再次感知:如圖1,當(dāng)點(diǎn)在線段上時(shí),如何判斷和數(shù)量關(guān)系呢?
甲同學(xué)通過(guò)過(guò)點(diǎn)分別向和作垂線,構(gòu)造全等三角形,證明出;
乙同學(xué)通過(guò)連接,證明出,,從而證明出.
理想感悟:如圖2,當(dāng)點(diǎn)落在線段上時(shí),判斷和的數(shù)量關(guān)系,并說(shuō)明理由.
拓展應(yīng)用:連接,并延長(zhǎng)交直線于點(diǎn).
(1)當(dāng)時(shí),如圖3,直接寫(xiě)出的面積為 ;
(2)直接寫(xiě)出面積的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】撫順某中學(xué)為了解八年級(jí)學(xué)生的體能狀況,從八年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,測(cè)試結(jié)果分為A,B,C,D四個(gè)等級(jí).請(qǐng)根據(jù)兩幅統(tǒng)計(jì)圖中的信息回答下列問(wèn)題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級(jí)共有700名學(xué)生,請(qǐng)你估計(jì)該中學(xué)八年級(jí)學(xué)生中體能測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名?
(4)若從體能為A等級(jí)的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動(dòng)員的重點(diǎn)對(duì)象,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),B(5,0),與y軸交于點(diǎn)C(0,),頂點(diǎn)為D,對(duì)稱(chēng)軸交x軸于點(diǎn)E.
(1)求該拋物線的一般式;
(2)若點(diǎn)Q為該拋物線上第一象限內(nèi)一動(dòng)點(diǎn),且點(diǎn)Q在對(duì)稱(chēng)軸DE的右側(cè),求四邊形DEBQ面積的最大值及此時(shí)點(diǎn)Q的坐標(biāo);
(3)若點(diǎn)P為對(duì)稱(chēng)軸DE上異于D,E的動(dòng)點(diǎn),過(guò)點(diǎn)D作直線PB的垂線交直線PB于點(diǎn)F,交x軸于點(diǎn)G,當(dāng)△PDG為等腰三角形時(shí),請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解本校學(xué)生每周參加課外輔導(dǎo)班的情況,隨機(jī)調(diào)査了部分學(xué)生一周內(nèi)參加課外輔導(dǎo)班的學(xué)科數(shù),并將調(diào)查結(jié)果繪制成如圖1、圖2所示的兩幅不完整統(tǒng)計(jì)圖(其中A:0個(gè)學(xué)科,B:1個(gè)學(xué)科,C:2個(gè)學(xué)科,D:3個(gè)學(xué)科,E:4個(gè)學(xué)科或以上),請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問(wèn)題:
(1)請(qǐng)將圖2的統(tǒng)計(jì)圖補(bǔ)充完整;
(2)根據(jù)本次調(diào)查的數(shù)據(jù),每周參加課外輔導(dǎo)班的學(xué)科數(shù)的眾數(shù)是 個(gè)學(xué)科;
(3)若該校共有2000名學(xué)生,根據(jù)以上調(diào)查結(jié)果估計(jì)該校全體學(xué)生一周內(nèi)參加課外輔導(dǎo)班在3個(gè)學(xué)科(含3個(gè)學(xué)科)以上的學(xué)生共有 人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①、圖②,在給定的一張矩形紙片上作一個(gè)正方形,甲、乙兩人的作法如下:
甲:以點(diǎn)A為圓心,AD長(zhǎng)為半徑畫(huà)弧,交AB于點(diǎn)E,以點(diǎn)D為圓心,AD長(zhǎng)為半徑畫(huà)弧,交CD于點(diǎn)F,連接EF,則四邊形AEFD即為所求;
乙:作∠DAB的平分線,交CD于點(diǎn)M,同理作∠ADC的平分線,交AB于點(diǎn)N,連接MN,則四邊形ADMN即為所求.
對(duì)于以上兩種作法,可以做出的判定是( )
A.甲正確,乙錯(cuò)誤B.甲、乙均正確
C.乙正確,甲錯(cuò)誤D.甲、乙均錯(cuò)誤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AC=6,BC=8,AB=10,以點(diǎn)C為圓心,4為半徑作圓.點(diǎn)D是⊙C上的一個(gè)動(dòng)點(diǎn),連接AD、BD,則AD+BD的最小值為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com