精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,在等邊△ABC中,點E、D分別是AC,BC邊的中點,點P為AB邊上的一個動點,連接PE,PD,PC,DE.設AP=x,圖1中某條線段的長為y,若表示y與x的函數關系的圖像大致如圖2所示,則這條線段可能是圖1中的( )

A.線段PD
B.線段PC
C.線段PE
D.線段DE

【答案】C
【解析】解:設邊長AC=a,
則0<x<a,
根據題意和等邊三角形的性質可知,
當x= a時,線段PE有最小值;
當x= a時,線段PC有最小值;
當x= a時,線段PD有最小值;
線段DE的長為定值.
故選:C.

【考點精析】利用函數的圖象對題目進行判斷即可得到答案,需要熟知函數的圖像是由直角坐標系中的一系列點組成;圖像上每一點坐標(x,y)代表了函數的一對對應值,他的橫坐標x表示自變量的某個值,縱坐標y表示與它對應的函數值.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知∠AOB=120°,∠COD∠AOB內部且∠COD=60°,下列說法:

如果∠AOC=∠BOD,則圖中有兩對互補的角;

如果作OE平分∠BOC,則∠AOC=2∠DOE;

如果作OM平分∠AOC,且∠MON=90°,則ON平分∠BOD;

如果在AOB外部分別作AOC、BOD的余角AOP、BOQ,

其中正確的有(.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某市為了更有效地利用水資源,制定了居民用水收費標準:如果一戶每月用水量不超過20立方米,每立方米按1.5元收費;如果超過20立方米,超過部分每立方米按1.8元收費,其余仍按每立方米1.5元計算,另外,超過的部分每立方米加收污水處理費1元,若某戶一月份用水量>20)立方米,問:

(1)該戶一月份應交水費多少元?(請用含的代數式表示)

(2)該戶三月份用水量為32立方米,請問該戶三月份應交水費多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】任何實數a,可用[a]表示不超過a的最大整數,如[4]=4,[]=1.現對72進行如下操作:72 []=8 []=2 []=1,這樣對72進行3次操作后變?yōu)?,類似地,①對81進行________次操作后變?yōu)?;②進行3次操作后變?yōu)?的所有正整數中,最大的是________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先化簡,再求值:

(1)(3a2ab7)(5ab4a27),其中, a2,b

(2)3(ab5b22a2)(7ab16a225b2),其中|a1|(b1)20.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小明家飲水機中原有水的溫度為20℃,通電開機后,飲水機自動開始加熱[此過程中水溫y(℃)與開機時間x(分)滿足一次函數關系],當加熱到100℃時自動停止加熱,隨后水溫開始下降[此過程中水溫y(℃)與開機時間x(分)成反比例關系],當水溫降至20℃時,飲水機又自動開始加熱…,重復上述程序(如圖所示),根據圖中提供的信息,解答下列問題:
(1)當0≤x≤8時,求水溫y(℃)與開機時間x(分)的函數關系式;
(2)求圖中t的值;
(3)若小明在通電開機后即外出散步,請你預測小明散步45分鐘回到家時,飲水機內的溫度約為多少℃?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據市場調查與預測,種植樹木的利潤y1與投資量x成正比例關系,種植花卉的利潤y2與投資量x的平方成正比例關系,并得到了表格中的數據.

投資量x(萬元)

2

種植樹木利潤y1(萬元)

4

種植花卉利潤y2(萬元)

2


(1)分別求出利潤y1與y2關于投資量x的函數關系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關于m的函數關系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在四邊形ABDC中,∠A=90°,AB=9,AC=12,BD=8,CD=17.

(1)連接BC,求BC的長;

(2)求四邊形ABDC的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD,∠B=90°,AD=9cm,AB=4cm,延長BC到點E,使CE=3cm,連接DE.若動點PA點出發(fā),以每秒2cm的速度沿線段AD運動;動點QE點出發(fā)以每秒3cm的速度沿EBB點運動,當點P、Q有一個到位置時,動點P、Q同時停止運動,設點P、Q同時出發(fā),并運動了t,回答下列問題:

(1)DE的長

(2)t為多少時,四邊形PQED成為平行四邊形;

(3)請直接寫出使得△DQE是等腰三角形時t的值

查看答案和解析>>

同步練習冊答案