【題目】湖南廣益實驗即將開展校園文化藝術(shù)節(jié)活動,為了合理編排節(jié)目,對學(xué)生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次隨機抽樣調(diào)查(每名學(xué)生必須選擇且只能選擇一類),并將調(diào)查結(jié)果繪制成如下不完整統(tǒng)計圖.

請你根據(jù)圖中信息,回答下列問題:

1)本次共調(diào)查了__________名學(xué)生;

2)根據(jù)以上統(tǒng)計分析,估計該校2000名學(xué)生中最喜愛小品的人數(shù)為__________人;

3)九年一班和九年二班各有2名學(xué)生擅長舞蹈,學(xué)校準(zhǔn)備從這4名學(xué)生中隨機抽取2名學(xué)生參加舞蹈節(jié)目的編排,那么抽取的2名學(xué)生恰好來自同一個班級的概率是多少?

【答案】150;(2640;(3

【解析】

1)用喜愛相聲類的人數(shù)除以它所占的百分比即可得到調(diào)查的總?cè)藬?shù);

2)用乘以樣本中最喜愛小品類人數(shù)所占的百分比即可得解;

3)畫樹狀圖表示出所有種等可能的結(jié)果數(shù),再找出抽取的名學(xué)生恰好來自同一班級的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1

2

3)設(shè)一班2名舞蹈學(xué)生為

二班2名舞蹈學(xué)生為、,則有

∵通過觀察樹狀圖可知,共有種等可能的結(jié)果,抽取的名學(xué)生恰好來自同一班級的結(jié)果有

名學(xué)生恰好來自同一班級的概率為

故答案是:(123

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,MN是⊙O的直徑,MN=4,點A在⊙O上,∠AMN=30°,B的中點,P是直徑MN上一動點,則PA+PB的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在⊙O的內(nèi)接四邊形ABCD中,AB=AD,∠C=120°,點E在⊙O上.

(1)求∠AED的度數(shù);

(2)若⊙O的半徑為2,則的長為多少?

(3)連接OD,OE,當(dāng)∠DOE=90°時,AE恰好是⊙O的內(nèi)接正n邊形的一邊,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB,坡面AC的傾斜角為45°.為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i=3.若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,割線PCD交⊙OCD,PAE=PDA.

1)求證:PA是⊙O的切線;

2)若PA=6CD=3PC,求PD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形,例如△ABC中,三邊分別為a、b、c,若滿足b2ac,則稱△ABC為比例三角形,其中b為比例中項.

1)已知△ABC是比例三角形,AB2,BC3,請直接寫出所有滿足條件的AC的長;

2)如圖,在四邊形ABCD中,ADBC,對角線BD平分∠ABC,∠BAC=∠ADC

①請直接寫出圖中的比例三角形;

②作AHBD,當(dāng)∠ADC90°時,求的值;

3)三邊長分別為a、b、c的三角形是比例三角形,且b為比例中項,已知拋物線yax2+bx+cy軸交于點B,頂點為AO為坐標(biāo)原點,以OB為直徑的⊙M經(jīng)過點A,記△OAB的面積為S1,⊙M的面積為S2,試問S1S2的值是否為定值?若是請求出定值,若不是請求出S1S2的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ACE,ACD均為直角三角形,∠ACE=90°,ADC=90°,AECD相交于點P,以CD為直徑的⊙O恰好經(jīng)過點E,并與AC,AE分別交于點B和點F.

(1)求證:∠ADF=EAC.

(2)若PC=PA,PF=1,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個涵洞的截面邊緣是拋物線形.現(xiàn)測得當(dāng)水面寬AB1.6m時,涵洞頂點與水面的距離是2.4m.這時,離開水面1.5m處,涵洞的寬DE_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B⊙O上兩點,△OAB外角的平分線交⊙O于另一點C,CD⊥ABAB的延長線于D.

(1)求證:CD⊙O的切線;

(2)E的中點,F⊙O上一點,EFABG,若tan∠AFE=,BE=BG,EG=3,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊答案