【題目】11·湖州)(本小題10分)

如圖,已知E、F分別是□ABCD的邊BCAD上的點,且BE=DF

求證:四邊形AECF是平行四邊形;

BC=10,∠BAC=90°,且四邊形AECF是菱形,求BE的長。

【答案】

證明:四邊形ABCD是平行四邊形,

∴AD∥BC,且AD=BC,…………………………………………………………………2

∴AF∥EC,………………………………………………………………………………1

∵BE=DF

∴AF=EC……………………………………………………………………………………1

四邊形AECF是平行四邊形……………………………………………………………1

解:四邊形AECF是菱形,

∴AE=EC,………………………………………1

∴∠1=∠2,…………………………………………1

∵∠3=90°∠2,∠4=90°∠1,

∴∠3=∠4,

∴AE=BE…………………………………………2

∴BE=AE=CE=BC=5………………………………1

【解析】

1)首先由已知證明AF∥EC,BE=DF,推出四邊形AECF是平行四邊形.

2)由已知先證明AE=BE,即BE=AE=CE,從而求出BE的長

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,足球是世界上第一大運動,你熱愛足球運動嗎?已知在足球比賽中,勝一場得3分,平一場得1分,負(fù)一場得0分,一隊共踢了30場比賽,負(fù)了9場,共得47分,那么這個隊勝了( 。

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形ABCD中,E為BC上一點,過B作BG⊥AE于G,延長BG至點F使∠CFB=45°

(1)求證:AG=FG;

(2)如圖2延長FC、AE交于點M,連接DF、BM,若C為FM中點,BM=10,求FD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣1)2017+3(tan60°)1﹣|1﹣ |+(3.14﹣π)0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A、M、B、N、C在同一直線上順次排列,點M是線段AB的中點,點N是線段MC的中點,點N在點B的右邊.

(1)填空:圖中共有線段   條;

(2)AB=6,MC=7,求線段BN的長;

(3)AB=a,MC=7,將線段BN的長用含a的代數(shù)式表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上一點,OD平分∠AOC.

(1)若∠AOC=60°,請求出∠AOD和∠BOC的度數(shù).

(2)若∠AOD和∠DOE互余,且∠AOD=AOE,請求出∠AOD和∠COE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點A表示1,現(xiàn)將點A沿x軸做如下移動,第一次點A向左移動2個單位長度到達(dá)點 A1,第二次將點A1,向右移動4個單位長度到達(dá)點A2,第三次將點A2向左移動6個單位長度到達(dá)點A3,按照這種移動規(guī)律移動下去,第n次移動到點An,如果點An與原點的距離等于19,那么n的值是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=120°,射線OCOA開始,繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘20°;射線ODOB開始,繞點O逆時針旋轉(zhuǎn),旋轉(zhuǎn)的速度為每分鐘5°,OCOD同時旋轉(zhuǎn),設(shè)旋轉(zhuǎn)的時間為t(0≤t≤15).

(1)當(dāng)t為何值時,射線OCOD重合;

(2)當(dāng)t為何值時,∠COD=90°;

(3)試探索:在射線OCOD旋轉(zhuǎn)的過程中,是否存在某個時刻,使得射線OC,OBOD中的某一條射線是另兩條射線所夾角的角平分線?若存在,請求出所有滿足題意的t的取值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

(1)3﹣5﹣(﹣1)﹣3+12﹣(﹣12

(2)|﹣|×[﹣32÷(﹣2+(﹣2)3]

(3)先化簡,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x、y滿足|x﹣|+(y+1)2=0.

查看答案和解析>>

同步練習(xí)冊答案