【題目】如圖,ADAE分別是ABC的角平分線和高線.

(1) 若∠B50°,∠C60°,求∠DAE的度數(shù);

2)若∠C >∠B,猜想∠DAE與∠C-B之間的數(shù)量關(guān)系,并加以證明.

【答案】1;(2)∠ DAE =(C-B). 證明見解析。

【解析】

1)先根據(jù)三角形內(nèi)角和得到∠CAB=180°-B-C=70°,再根據(jù)角平分線與高線的定義得到∠CAD=CAB=35°,∠AEC=90°,則∠CAE=90°-C=30°,然后利用∠DAE=CAD-CAE計(jì)算即可.

2)根據(jù)題意可以用∠B和∠C表示出∠CAD和∠CAE,從而可以得到∠DAE與∠C-B的關(guān)系.

(1)ABC,∵∠B=50°,C=60°,

∴∠BAC=180°-50°-60°=70°.

AD是∠BAC的角平分線,

∴∠BAD=DAC=BAC=35°.

又∵AEBC上的高,

∴∠AEC=90°.

CAE,CAE=90°-C=90°-60°=30°,

∴∠DAE=CAD-CAE=35°-30°=5°.

2)∠ DAE =(C-B).

證明如下:

AEABC的高,

∴∠AEC=90°,

∴∠EAC=90°-C,

ADABC的角平分線,

∴∠DAC=BAC.

∵∠BAC=180°-B-C,

∴∠DAC=(180°-B-C) ,

∴∠DAE=DAC-EAC

=(180°-B-C) - (90°-C)

=(C-B)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種二十四點(diǎn)的游戲,其游戲規(guī)則是這樣的:任取四個113之間的自然數(shù),將這四個數(shù)(每個數(shù)用且只能用一次)進(jìn)行加減乘除四則運(yùn)算,使其結(jié)果等于24.例如對12,34,可作如下運(yùn)算:(1+2+3)×424(上述運(yùn)算與4×(123)視為相同方法的運(yùn)算)現(xiàn)有四個有理數(shù)34,-6,10,運(yùn)用上述規(guī)則寫出三種不同方法的運(yùn)算式,可以使用括號,使其結(jié)果等于24.運(yùn)算式如下:

1____________________________;

2____________________________;

3____________________________;

另有四個有理數(shù)3,-5,7,-13,可通過運(yùn)算式

4____________________________使其結(jié)果等于24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】讀書破萬卷,下筆如有神,這是古人關(guān)于讀書的成功經(jīng)驗(yàn).開展課外閱讀可以引起學(xué)生濃厚的學(xué)習(xí)興趣和探求知識的強(qiáng)烈欲望,豐富知識,開闊視野,也有利于學(xué)習(xí)和鞏固老師在課堂上所教的基礎(chǔ)知識,使學(xué)生學(xué)得有趣,學(xué)得扎實(shí),學(xué)得活潑,是啟發(fā)智慧和鍛煉才能的一條重要途徑.為了創(chuàng)設(shè)全新的校園文化氛圍,進(jìn)一步組織學(xué)生開展課外閱讀,讓學(xué)生在豐富多彩的書海中,擴(kuò)大知識源,親近母語,提高文學(xué)素養(yǎng).某校準(zhǔn)備開展與經(jīng)典為友、與名著為伴的閱讀活動,活動前對本校學(xué)生進(jìn)行了你最喜歡的圖書類型(只寫一項(xiàng))的隨機(jī)抽樣調(diào)查,相關(guān)數(shù)據(jù)統(tǒng)計(jì)如下:

請根據(jù)以上信息解答下列問題:

1)該校對多少名學(xué)生進(jìn)行了抽樣調(diào)查?

2)請將圖1和圖2補(bǔ)充完整,并求出扇形統(tǒng)計(jì)圖中小說所對應(yīng)的圓心角度數(shù).

3)已知該校共有學(xué)生800人,利用樣本數(shù)據(jù)估計(jì)全校學(xué)生中最喜歡小說人數(shù)約為多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式(組),并將它的解集在數(shù)軸上表示出來.

1; 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明租用共享單車從家出發(fā),勻速騎行到相距2400米的郵局辦事.小明出發(fā)的同時,他的爸爸以每分鐘100米的速度從郵局沿同一條道路步行回家,小明在郵局停留了2分鐘后沿原路按原速返回.設(shè)他們出發(fā)后經(jīng)過t(分)時,小明與家之間的距離為s1(米),小明爸爸與家之間的距離為s2(米),圖中折線OABD,線段EF分別表示s1,s2t之間的函數(shù)關(guān)系的圖象.

1)求s1t之間的函數(shù)表達(dá)式;

2)小明從家出發(fā),經(jīng)過_______分在返回途中追上爸爸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的坐標(biāo)為(a,b),點(diǎn)P關(guān)聯(lián)點(diǎn)”P的坐標(biāo)定義如下:當(dāng)時,P點(diǎn)坐標(biāo)為(b,a);當(dāng)時,P點(diǎn)坐標(biāo)為(-a,-b).

1)寫出A5,3)的變換點(diǎn)坐標(biāo)_____B1,6)的變換點(diǎn)坐標(biāo)______C(-2,4)的變換點(diǎn)坐標(biāo)_____;

2)如果直線l上所有點(diǎn)的關(guān)聯(lián)點(diǎn)組成一個新的圖形,記作圖形W,請畫出圖形W

3)在(2)的條件下,若直線y=kx1k≠0)與圖形W有兩個交點(diǎn),請直接寫出k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)請?jiān)跈M線上填寫合適的內(nèi)容,完成下面的證明:

如圖如果ABCD,求證:∠APC=∠A+C

證明:過PPMAB

所以∠A=∠APM,(   )

因?yàn)?/span>PMAB,ABCD(已知)

所以∠C   (   )

因?yàn)椤?/span>APC=∠APM+CPM

所以∠APC=∠A+C(等量代換)

(2)如圖ABCD,根據(jù)上面的推理方法,直接寫出∠A+P+Q+C   

(3)如圖,ABCD,若∠ABPx,∠BPQy,∠PQCz,∠QCDm,則m   (x、y、z表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+ca≠0)的大致圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是( )

A. 函數(shù)有最小值

B. 對稱軸是直線x=

C. 當(dāng)xyx的增大而減小

D. 當(dāng)﹣1x2時,y0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在讀書月活動中,學(xué)校準(zhǔn)備購買一批課外讀物,為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次調(diào)查中,一共調(diào)查了多少名同學(xué);

2)條形統(tǒng)計(jì)圖中,mn的值;

3)扇形統(tǒng)計(jì)圖中,求出藝術(shù)類讀物所在扇形的圓心角的度數(shù);

4)學(xué)校計(jì)劃購買課外讀物6000冊,請根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校應(yīng)購買其他類讀物多少冊?

查看答案和解析>>

同步練習(xí)冊答案