【題目】如圖1,在△ABC中,∠ABC=45°,BC=7cm,AB=cmP從點B出發(fā)沿BC方向向點C運動,當(dāng)點P到點C時,停止運動

1)如圖2,過點PPQBC,PQAB于點Q,以PQ為一邊向右側(cè)作矩形PQRS,若點R恰好在邊AC上,且滿足QR=2PQ.BP得值.

(2)以點P為圓心,BP為半徑作圓.

①如圖3,當(dāng)⊙P與邊AC相切于點E時,求BP的值;

②隨著BP的變化,⊙P與△ABC三邊的公共點的個數(shù)也在變化,請直接寫出公共點個數(shù)與對應(yīng)的BP的取值范圍.

【答案】(1);(2)①;②當(dāng)時,⊙PABBC均有2個公共點,與AC無公共點;當(dāng)時,⊙PABBC均有2個公共點,與AC1個公共點;當(dāng)時,⊙PAB、BCAC均有2個公共點;當(dāng)時,⊙PABAC1個公共點,與BC2個公共點;當(dāng)時,⊙PABBC1個公共點,與AC無個公共點.

【解析】

1)過點AADBC,由AD△ABC的高,∠ABC=45°,可得AD=BD,再由AB=cm,即可得出AD的長,設(shè)BP=PQ=x,根據(jù)相似三角形的判定和性質(zhì)列比例式求解;①過點AADBC,連接PE,根據(jù)勾股定理求AC,根據(jù)AA定理判定△ADC∽△PEC,然后列比例式求解;

解:(1)過點AADBC,交QR于點E

ADBC,∠ABC=45°,

AD=BD=

在矩形PQRSRQBC

∴△AQR∽△ABC

設(shè)BP=PQ=x,則QR=2x,AE=3-x

解得:x=

BP=

2)①過點AADBC,連接PE

由(1)可知,BD=AD=3

CD=BC-BD=7-3=4

∴在RtADC中,

⊙P與邊AC相切于點E

∴∠ADC=PEC=90°

又∵∠C=C

∴△ADC∽△PEC

設(shè)BP=PE=x

解得:x=

BP=

3)由AB=,BC=7(2)BP=可知

當(dāng)時,⊙PABBC均有2個公共點,與AC無公共點;

當(dāng)時,⊙PABBC均有2個公共點,與AC1個公共點;

當(dāng)時,⊙PABBCAC均有2個公共點;

當(dāng)時,⊙PABAC1個公共點,與BC2個公共點;

當(dāng)時,⊙PABBC1個公共點,與AC無個公共點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從三角形一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.

1)如圖1,在△ABC中,∠A=40°,∠B=60°,當(dāng)∠BCD=40°時,證明:CD△ABC的完美分割線.

2)在△ABC中,∠A=48°,CD△ABC的完美分割線,且△ACD是以AC為底邊的等腰三角形,求∠ACB的度數(shù).

3)如圖2,在△ABC中,AC=2,BC=2,CD△ABC的完美分割線,△ACD是以CD為底邊的等腰三角形,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4BC6,點MBC的中點.

1)在AM上求作一點E,使ADE∽△MAB(尺規(guī)作圖,不寫作法);

2)在(1)的條件下,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB4,∠ADN60°,點EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N.連接MD、AN

(1)求證:四邊形AMDN是平行四邊形;

(2)填空:

①當(dāng)AM的值為_____時,四邊形AMON是矩形;

②當(dāng)AM的值為______時,四邊形AMDN是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2個信封,每個信封內(nèi)各裝有四張卡片,其中一個信封內(nèi)的三張卡片上分別寫有1、2、3、三個數(shù),另一個信封內(nèi)的三張卡片分別寫有45、6三個數(shù),甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個信封中各隨機抽取一張卡片,然后把卡片上的兩個數(shù)相乘,如果得到的積大于10,則甲獲勝,否則乙獲勝.

1)請你通過列表(或畫樹狀圖)計算甲獲勝的概率.

2)你認(rèn)為這個游戲公平嗎?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB4,AD6,EAB邊的中點,F是線段BC上的動點,將△EBF沿EF所在直線折疊得到△EBF,連接ED,則DE的長度是_____,BD的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形OABC的一OAx軸的正半軸上,O是坐標(biāo)原點,tanAOC,反比例函數(shù)y的圖象經(jīng)過點C,與AB交于點D,則△COD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,ODAB,垂足為點C,交⊙O于點D,點E在⊙O上.

(1)若∠AOD=52°,求∠DEB的度數(shù);

(2)若CD=2,AB=8,求半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,內(nèi)接于,且的直徑.的平分線交于點,過點的切線的延長線于點,過點于點,過點于點

1)求證:

2)試猜想線段,,之間有何數(shù)量關(guān)系,并加以證明;

3)若,求線段的長.

查看答案和解析>>

同步練習(xí)冊答案