【題目】已知等邊△ABC邊長(zhǎng)為8cm,點(diǎn)D是AC的中點(diǎn),點(diǎn)E在射線(xiàn)BD上運(yùn)動(dòng),以AE為邊在AE右側(cè)作等邊△AEF,作射線(xiàn)CF交射線(xiàn)BD于點(diǎn)M,連接AM.
(1)當(dāng)點(diǎn)E在線(xiàn)段BD(不包括端點(diǎn)B,D)上時(shí),求證:BE=CF;
(2)求證:MA平分∠BMN;
(3)連接DF,點(diǎn)E在移動(dòng)過(guò)程中,線(xiàn)段DF長(zhǎng)的最小值等于 (直接寫(xiě)出結(jié)果)
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)DF最小值為2cm.
【解析】
(1)欲證明BE=CF,只要證明△BAE≌△CAF(SAS)即可;
(2)首先證明∠BCM=90°,然后可得∠AMD=∠CMD=60°,求出∠AMN=60°即可;
(3)作DH⊥CN于H,根據(jù)點(diǎn)F的運(yùn)動(dòng)軌跡是射線(xiàn)CN可知,當(dāng)點(diǎn)F與H重合時(shí),DF的長(zhǎng)最小,然后利用含30°直角三角形的性質(zhì)求出DH即可.
(1)證明:∵△ABC,△AEF都是等邊三角形,
∴AB=AC,AE=AF,∠BAC=∠EAF,
∴∠BAE=∠CAF,
∴△BAE≌△CAF(SAS),
∴BE=CF;
(2)證明:∵△ABC是等邊三角形,AD=DC,
∴BD⊥AC,∠ACB=∠ABC=∠BAC=60°,
∴∠ABE=∠CBE=30°,MA=MC,
∵△BAE≌△CAF,
∴∠ABE=∠ACF=30°,
∴∠BCM=90°,
∴∠BMC=90°﹣30°=60°,
∵MA=MC,MB⊥AC,
∴∠AMD=∠CMD=60°,
∴∠AMN=60°,
∴∠AMN=∠AMD,
∴AM平分∠BMN.
(3)解:如圖,作DH⊥CN于H.
∵∠BCN=90°,
∴點(diǎn)F的運(yùn)動(dòng)軌跡是射線(xiàn)CN,
根據(jù)垂線(xiàn)段最短可知,當(dāng)點(diǎn)F與H重合時(shí),DF的長(zhǎng)最小,
∵CD=AD=4cm,∠DCH=30°,∠DHC=90°,
∴DH=CD=2cm,
∴DF最小值為2cm.
故答案為2cm.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AB的垂直平分線(xiàn)MN交AC于點(diǎn)D,交AB于點(diǎn)E.
(1)若∠A=40°,求∠DBC的度數(shù);
(2)若AE=6,△CBD的周長(zhǎng)為20,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線(xiàn),DE⊥AB,DF⊥BC垂足分別為E、F.
(1)求證:BE=BF;
(2)若△ABC的面積為70,AB=16,DE=5,則BC= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解七年級(jí)學(xué)生體育測(cè)試成績(jī)情況,現(xiàn)從中隨機(jī)抽取部分學(xué)生的體育成績(jī)統(tǒng)計(jì)如下,其中右側(cè)扇形統(tǒng)計(jì)圖中的圓心角α為36°,根據(jù)圖表中提供的信息,回答下列問(wèn)題:
體育成績(jī)統(tǒng)計(jì)表 | ||
體育成績(jī)(分) | 人數(shù)(人) | 百分比(%) |
26 | 8 | 16 |
27 | 12 | 24 |
28 | 15 | |
29 | n | |
30 |
(1)求樣本容量及n的值;
(2)已知該校七年級(jí)共有500名學(xué)生,如果體育成績(jī)達(dá)28分以上為優(yōu)秀,請(qǐng)估計(jì)該校七年級(jí)學(xué)生體育成績(jī)達(dá)到優(yōu)秀的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過(guò)點(diǎn)E作GE∥AB,交線(xiàn)段AC的延長(zhǎng)線(xiàn)于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),∠B=50°,∠A=26°,將△ABC沿DE折疊,點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)A′,則∠AEA′的度數(shù)是( 。
A. 145° B. 152° C. 158° D. 160°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AC,BD相交于點(diǎn)O,點(diǎn)E是OA的中點(diǎn),連接BE并延長(zhǎng)交AD于點(diǎn)F,已知S△AEF=4,則下列結(jié)論:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正確的是( 。
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米.如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,則小巷的寬度為( )
A.0.7米B.1.5米C.2.2米D.2.4米
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com