【題目】如圖,矩形ABCD,,,點M,N分別為邊AD和邊BC上的兩點,且,點E是點A關于MN所在的直線的對稱點,取CD的中點F,連接EF,NF,分別將沿著EF所在的直線折疊,將沿著NF所在的直線折疊,點D和點C恰好重合于EN上的點以下結論中:
;;∽;四邊形MNCD是正方形;其中正確的結論是
A. B. C. D.
【答案】B
【解析】
由折疊的性質得到∠DFE=∠GFE,∠GFN=∠CFN,根據(jù)平角的定義得到EF⊥NF;故①正確;連接AN,根據(jù)軸對稱的性質得到∠ANM=∠ENM,推出∠MNE≠∠CNE;故②錯誤;根據(jù)余角的性質得到∠DFE≠∠NEM,推出△MNE∽△DEF錯誤,故③錯誤;設DE=x,根據(jù)相似三角形的性質得到CN=8,推出四邊形MNCD是正方形;故④正確;根據(jù)線段的和差得到AM=6,故⑤錯誤.
∵由折疊的性質得,∠DFE=∠GFE,∠GFN=∠CFN,
∵∠DFE+∠GFE+∠GFN+∠CFN=180°,
∴∠GFN+∠CFN=90°,
∴∠NFE=90°,
∴EF⊥NF;故①正確;
連接AN,
∵點E是點A關于MN所在的直線的對稱點,
∴∠ANM=∠ENM,
∴∠ANB=∠CNE,
而四邊形ABNM不是正方形,
∴∠ANB≠∠ANM,
∴∠MNE≠∠CNE;故②錯誤;
∵∠NEF≠90°,∠DFE+∠DEF=90°,∠DEF+∠MEN≠90°,
∴∠DFE≠∠NEM,
∴△MNE∽△DEF錯誤,故③錯誤;
設DE=x,
∴BN=AM= ,
∴CN=14﹣BN= ,
∵∠EFD+∠CFN=∠EFD+∠DEF=90°,
∴∠DEF=∠CFN,
∵∠D=∠C=90°,
∴△DEF∽△CFN,
∴ ,
∵F是CD的在中點,
∴CF=DF=4,
∴ ,
∴x=2,x=﹣16(不合題意舍去),
∴DE=2,CN=8,
∴CD=CN,
∴四邊形MNCD是正方形;故④正確;
∵CN=DM=8,
∴AM=6,故⑤錯誤,
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC的三個頂點坐標為A(﹣2,3),B(﹣6,0),C(﹣1,0).
(1)將△ABC繞坐標原點O旋轉180°,畫出圖形,并寫出點A的對應點P的坐標 .
(2)將△ABC繞坐標原點O逆時針旋轉90°,直接寫出點A的對應點Q的坐標 .
(3)請直接寫出:以A、B、C為頂點的平行四邊形的第四個頂點D的坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形中,動點從出發(fā),以相同的速度,沿 方向運動到點處停止.設點運動的路程為, 面積為,與的函數(shù)圖象如圖②所示.
(1)矩形的面積為 ;
(2)如圖③,若點沿邊向點以每秒1個單位的速度移動,同時,點從點出發(fā)沿邊向點以每秒2個單位的速度移動.如果、兩點在分別到達、兩點后就停止移動,回答下列問題:
①當運動開始秒時,試判斷的形狀;
②在運動過程中,是否存在這樣的時刻,使以為圓心,的長為半徑的圓與矩形的對角線相切,若存在,求出運動時間;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校隨機抽取九年級部分同學接受一次內容為“最適合自己的考前減壓方式”的調查活動,學校收集整理數(shù)據(jù)后,將減壓方式分為五類,并繪制了圖1、圖2兩個不完整的統(tǒng)計圖,請根據(jù)圖中的信息解答下列問題:
九年級接受調查的同學共有多少名,并補全條形統(tǒng)計圖;
九年級共有500名學生,請你估計該校九年級聽音樂減壓的學生有多少名;
若喜歡“交流談心”的5名同學中有三名男生和兩名女生,心理老師想從5名同學中任選兩名同學進行交流,請用畫樹狀圖或列表的方法求同時選出的兩名同學都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(1)把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;
(2)把△A1B1C1繞點A1按逆時針方向旋轉90°,在網(wǎng)格中畫出旋轉后的△A1B2C2;
(3)如果網(wǎng)格中小正方形的邊長為1,求點B經過(1)、(2)變換的路徑總長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,,延長DA于點E,使得,連接BE.
求證:四邊形AEBC是矩形;
過點E作AB的垂線分別交AB,AC于點F,G,連接CE交AB于點O,連接OG,若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一座大橋的兩端位于河的 A、B 兩點,某同學為了測量 A、B 兩點之間的河寬,在垂直于大橋 AB 的直線型道路 l 上測得了如下的數(shù)據(jù):∠BDA=76.1°,∠BCA=68.2°,CD=42.8 米。求大橋 AB 的長(精確到 1 米) 參考數(shù)據(jù):sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5,
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關系?請說明理由;
(3)設AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC≌△DCE≌△GEF,三條對應邊BC.CE、EF在同一條直線上,連接BG,分別交AC、DC、DE于點P、Q、K,其中S△PQC=3,則圖中三個陰影部分的面積和為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com