【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.
(1)求新傳送帶AC的長度.
(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點5米的貨物MNQP是否需要挪走,并說明理由.
參考數(shù)據(jù):.
【答案】(1)AC的長度約為8米;(2)貨物MNQP不應(yīng)挪走.
【解析】
試題分析:(1)在構(gòu)建的直角三角形中,首先求出兩個直角三角形的公共直角邊,進而在Rt△ACD中,求出AC的長.
(2)通過解直角三角形,可求出BD、CD的長,進而可求出BC、PC的長.然后判斷PC的值是否大于2米即可.
解:(1)如圖,
在Rt△ABD中,AD=ABsin45°=4×=4.
在Rt△ACD中,
∵∠ACD=30°,
∴AC=2AD=8.
即新傳送帶AC的長度約為8米;
(2)結(jié)論:貨物MNQP不用挪走. (5分)
解:在Rt△ABD中,BD=ABcos45°=4×=4.
在Rt△ACD中,CD=ACcos30°=2.
∴CB=CD﹣BD=2﹣4≈0.9.
∵PC=PB﹣CB≈4﹣0.9=3.1>2,
∴貨物MNQP不應(yīng)挪走.
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中, 若∠A :∠B :∠C = 1 : 2 : 3 , 則△ABC 是( )
A. 銳角三角形. B. 直角三角形 C. 鈍角三角形 D. 等腰三角形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①關(guān)于某條直線成軸對稱的兩個圖形是全等圖形;
②有一個外角為60°的等腰三角形是等邊三角形;
③關(guān)于某直線對稱的兩條線段平行;
④正五邊形有五條對稱軸;
⑤在直角三角形中,30°角所對的邊等于斜邊的一半. 其中正確的有( )個.
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點,連接DE、BF、BD.
(1)求證:△ADE≌△CBF.
(2)若AD⊥BD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),△ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:
(1)作出△ABC繞點A逆時針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點O成中心對稱的△A1B2C2.
(2)點B1的坐標為 ,點C2的坐標為 .
(3)△ABC經(jīng)過怎樣的旋轉(zhuǎn)可得到△A1B2C2, .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題:①直徑是弦;②經(jīng)過三個點一定可以作圓;③三角形的內(nèi)心到三角形各頂點的距離都相等;④半徑相等的兩個半圓是等弧;⑤菱形的四個頂點在同一個圓上;其中正確結(jié)論的個數(shù)有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:
請結(jié)合以上信息,解答下列問題:
(1)求甲、乙兩種商品的進貨單價;
(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進貨單價)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com