【題目】如圖是某貨站傳送貨物的平面示意圖.為了提高傳送過程的安全性,工人師傅欲減小傳送帶與地面的夾角,使其由45°改為30°.已知原傳送帶AB長為4米.

(1)求新傳送帶AC的長度.

(2)如果需要在貨物著地點C的左側(cè)留出2米的通道,試判斷距離B點5米的貨物MNQP是否需要挪走,并說明理由.

參考數(shù)據(jù):

【答案】(1)AC的長度約為8米;(2)貨物MNQP不應(yīng)挪走.

【解析】

試題分析:(1)在構(gòu)建的直角三角形中,首先求出兩個直角三角形的公共直角邊,進而在RtACD中,求出AC的長.

(2)通過解直角三角形,可求出BD、CD的長,進而可求出BC、PC的長.然后判斷PC的值是否大于2米即可.

解:(1)如圖,

在RtABD中,AD=ABsin45°=4×=4.

在RtACD中,

∵∠ACD=30°,

AC=2AD=8

即新傳送帶AC的長度約為8米;

(2)結(jié)論:貨物MNQP不用挪走. (5分)

解:在RtABD中,BD=ABcos45°=4×=4.

在RtACD中,CD=ACcos30°=2

CB=CD﹣BD=2﹣4≈0.9.

PC=PB﹣CB≈4﹣0.9=3.1>2,

貨物MNQP不應(yīng)挪走.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中, 若∠A :∠B :∠C = 1 : 2 : 3 , 則△ABC 是( )

A. 銳角三角形. B. 直角三角形 C. 鈍角三角形 D. 等腰三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題:關(guān)于某條直線成軸對稱的兩個圖形是全等圖形;

有一個外角為60°的等腰三角形是等邊三角形;

關(guān)于某直線對稱的兩條線段平行;

正五邊形有五條對稱軸;

在直角三角形中,30°角所對的邊等于斜邊的一半其中正確的有( )

A1個 B2個 C3個 D4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E,F(xiàn)分別為邊AB,CD的中點,連接DE、BF、BD.

(1)求證:ADE≌△CBF

(2)若ADBD,則四邊形BFDE是什么特殊四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形網(wǎng)格中(網(wǎng)格中的每個小正方形邊長是1),ABC的頂點均在格點上,請在所給的直角坐標系中解答下列問題:

(1)作出ABC繞點A逆時針旋轉(zhuǎn)90°的AB1C1,再作出AB1C1關(guān)于原點O成中心對稱的A1B2C2

(2)點B1的坐標為 ,點C2的坐標為

(3)ABC經(jīng)過怎樣的旋轉(zhuǎn)可得到A1B2C2,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(a2+b2)(a2+b2﹣2)=3,則a2+b2=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題:直徑是弦;經(jīng)過三個點一定可以作圓;三角形的內(nèi)心到三角形各頂點的距離都相等;半徑相等的兩個半圓是等弧;菱形的四個頂點在同一個圓上;其中正確結(jié)論的個數(shù)有(

A.1個 B.2個 C.3個 D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店銷售甲、乙兩種商品,現(xiàn)有如下信息:

請結(jié)合以上信息,解答下列問題:

(1)求甲、乙兩種商品的進貨單價;

(2)已知甲、乙兩種商品的零售單價分別為2元、3元,該商店平均每天賣出甲商品500件和乙商品1300件,經(jīng)市場調(diào)查發(fā)現(xiàn),甲種商品零售單價每降0.1元,甲種商品每天可多銷售100件,商店決定把甲種商品的零售單價下降m(m>0)元,在不考慮其他因素的條件下,求當m為何值時,商店每天銷售甲、乙兩種商品獲取的總利潤為1800元(注:單件利潤=零售單價﹣進貨單價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個角的補角等于這個角的2倍, 則這個角的度數(shù)是_________.

查看答案和解析>>

同步練習冊答案