【題目】如圖,六邊形ABCDEF與六邊形A′B′C′D′E′F′相似.
求:(1)相似比;
(2)∠A和∠B′的度數(shù);
(3)邊CD,EF,A′F′,E′D′的長.
【答案】(1);(2) ∠A=90°,∠B′=150°;(3)CD=cm,EF=cm,A′F′=cm,E′D′=cm.
【解析】(1)對應(yīng)邊的比就是相似比;(2)利用相似多邊形對應(yīng)角相等,可求出結(jié)果;(3)利用相似多邊形性質(zhì)列出比例式求解.
解:(1)∵六邊形ABCDEF與六邊形A′B′C′D′E′F′相似,BC與B′C′是對應(yīng)邊,
∴ ,即相似比為.
(2)∵六邊形ABCDEF與六邊形A′B′C′D′E′F′相似,∴∠A=∠A′,∠B=∠B′.又∵∠A′=90°,∠B=150°,∴∠A=90°,∠B′=150°.
(3)∵六邊形ABCDEF與六邊形A′B′C′D′E′F′相似,∴====.
由=,AF=4 cm,得=,
∴A′F′= (cm).
由=,E′F′=4 cm,得=,
∴EF= (cm).
由=,ED=5 cm,得=,
∴E′D′= (cm).
由=,C′D′=3 cm,得=,
∴CD= (cm).
即CD=cm,EF=cm,A′F′=cm,E′D′=cm.
科目:初中數(shù)學 來源: 題型:
【題目】若AB是⊙O內(nèi)接正五邊形的一邊,AC是⊙O內(nèi)接正六邊形的一邊,則∠BAC等于( )
A. 120° B. 6° C. 114° D. 114°或6°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,已知△ABC和△BDE都是等邊三角形.則下列結(jié)論:①AE=CD;②BF=BG;③∠AHC=60°;④△BFG是等邊三角形;⑤HB平分∠AHD.其中正確的有( 。
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、D、C、F在同一條直線上,AD=CF,AB=DE,BC=EF.
(1)求證:ΔABC≌△DEF;
(2)若∠A=55°,∠B=88°,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,E為AB上一點,∠BED=2∠BAD.
(1)求證:AD平分∠CDE;
(2)若AC⊥AD,∠ACD+∠AED=165°,求∠ACD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】楊輝是中國南宋末年的一位杰出的數(shù)學家,數(shù)學教育家.楊輝三角是楊輝的一大重要研究成果,其中蘊含了許多優(yōu)美的規(guī)律.古今中外,許多的數(shù)學家都曾對其深入研究過,并將研究結(jié)果應(yīng)用于實踐.其中楊輝三角如下
(1)第5行的數(shù)和為________
(2)觀察每行數(shù)的和,并歸納出第行數(shù)的和為________
(3)第三斜行的數(shù)分別為1,3,6,10,…,請依此規(guī)律寫出第5個數(shù)為 .請歸納得出第三斜行第個數(shù)的表達式________(用含有的表達式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,∠B=30°,AB=10,點D是射線CB上的一個動點,△ADE是等邊三角形,點F是AB的中點,連接EF.
(1)如圖,點D在線段CB上時,
①求證:△AEF≌△ADC;
②連接BE,設(shè)線段CD=x,BE=y,求y2﹣x2的值;
(2)當∠DAB=15°時,求△ADE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級學生立定跳遠水平,隨機抽取該年級50名學生進行測試,并把測試成績(單位:m)繪制成不完整的頻數(shù)分布表和頻數(shù)分布直方圖.
學生立定跳遠測試成績的頻數(shù)分布表
分組 | 頻數(shù) |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請根據(jù)圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績的中位數(shù)落在 范圍內(nèi);
(2)請把頻數(shù)分布直方圖補充完整;
(3)該校九年級共有1000名學生,估計該年級學生立定跳遠成績在2.4≤x<2.8范圍內(nèi)的學生有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1,是一個長為,寬為的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后按圖2的形狀拼成一個正方形.
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2,三個代數(shù)式,,之間的等量關(guān)系是 ;
(3)若,,求;
(4)觀察圖3,你能得到怎樣的代數(shù)恒等式呢?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com