精英家教網 > 初中數學 > 題目詳情

【題目】1)計算:(15x3y+10x2y﹣5xy2÷5xy

2)計算:(3x+y)(x+2y﹣3xx+2y

3)先化簡,再求值:(x+2)(x2x+12,其中x=

【答案】(1) xy+2y2 (2) ﹣6

【解析】試題分析:(1)利用多項式除以單項式的運算法則計算即可;(2)利用多項式乘以多項式的運算法則、單項式乘以多項式的運算法則分別計算后,再合并同類項即可;(3)根據平方差公式和完全平方公式計算后,合并同類項,再代入求值即可.

試題解析:

1)(15x3y+10x2y﹣5xy2÷5xy

=3x2+2x﹣y

2)(3x+y)(x+2y﹣3xx+2y

=3x2+6xy+xy+2y2﹣3x2﹣6xy

=xy+2y2;

3)(x+2)(x﹣2x+12

=x2﹣4﹣x2﹣2x﹣1

=﹣2x﹣5,

x=時,原式=﹣2×﹣5=﹣1﹣5=﹣6

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形OABC中,AO=10,AB=8,沿直線CD折疊矩形OABC的一邊BC,使點B落在OA邊上的點E處,分別以OC,OA所在的直線為x軸,y軸建立平面直角坐標系,拋物線y=ax2+bx+c經過O,D,C三點.

(1)求AD的長及拋物線的解析式;
(2)一動點P從點E出發(fā),沿EC以每秒2個單位長的速度向點C運動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長的速度向點O運動,當點P運動到點C時,兩點同時停止運動,設運動時間為t秒,當t為何值時,以P,Q,C為頂點的三角形與ADE相似?
(3)點N在拋物線對稱軸上,點M在拋物線上,是否存在這樣的點M與點N,使以M,N,C,E為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(不寫求解過程);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1.紙上有5個邊長為1的小正方形組成的紙片,可把它剪拼成一個正方形(圖2)

3)

拼成的正方體的面積與邊長分別是多少?

你能把這十個小正方體組成的圖形紙(圖3),剪拼成一個大正方形嗎?若能,則請畫出剪拼成的大正方形,并求出其邊長為多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面題目的計算過程:

=

=x﹣4﹣2(x﹣2)②

=x﹣4﹣2x+4③

=﹣x④

(1)上述計算過程中,從哪一步開始出現錯誤?請寫出錯誤步驟的序號   ;

(2)錯誤原因是   ;

(3)寫出本題的正確解法.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,一個長方形的三個頂點坐標分別為(﹣2,﹣2),(﹣2,3),(5,﹣2),則第四個頂點的坐標( 。

A. (5,3) B. (3,5) C. (7,3) D. (3,3)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】有許多代數恒等式可以用圖形的面積來表示,如圖,它表示了

是將一個長2m、寬2n的長方形,沿圖中虛線平方為四塊小長方形,然后再拼成一個正方形,則圖中的陰影部分的正方形的邊長等于______用含m、n的代數式表示

請用兩種不同的方法列代數式表示圖中陰影部分的面積.

方法______方法______

請你觀察圖形,寫出三個代數式、mn關系的等式:______;

根據題中的等量關系,解決如下問題:若已知,,則______;

小明用8個一樣大的長方形acm,寬拼圖,拼出了如圖甲、乙的兩種圖案,圖案甲是一個正方形,圖案乙是一個大的長方形,圖案甲的中間留下了邊長是2cm的正方形小洞的值為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,方格紙中每一個小方格的邊長為1個單位,試解答下列問題:

的頂點都在方格紙的格點上,先將向右平移2個單位,再向上平移3個單位,得到,其中點、分別是AB、C的對應點,試畫出

連接、,則線段、的位置關系為______,線段、的數量關系為______;

平移過程中,線段AB掃過部分的面積為______平方單位

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當點A落在四邊形BCED的外部時,則∠A∠1∠2之間有一種數量關系始終保持不變,請試著找一找這個規(guī)律,你發(fā)現的規(guī)律是( )

A. 2∠A=∠1﹣∠2 B. 3∠A=2∠1﹣∠2

C. 3∠A=2∠1﹣∠2 D. ∠A=∠1﹣∠2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=∠ACB,以AC為直徑的⊙O分別交AB、BC于點M、N,點P在AB的延長線上,且∠CAB=2∠BCP.
(1)求證:直線CP是⊙O的切線;
(2)若BC=2 ,sin∠BCP= ,求點B到AC的距離.

查看答案和解析>>

同步練習冊答案