【題目】如圖.在Rt△ABC中,∠A=30°,DE垂直平分斜邊AC,交AB于D,E為垂足,連接CD,若BD=1,則AC的長是_____.
【答案】2.
【解析】求出∠ACB,根據(jù)線段垂直平分線求出AD=CD,求出∠ACD、∠DCB,求出CD、AD、AB,由勾股定理求出BC,再求出AC即可.
解:∵∠A=30°,∠B=90°,
∴∠ACB=180°﹣30°﹣90°=60°,
∵DE垂直平分斜邊AC,
∴AD=CD,
∴∠A=∠ACD=30°,
∴∠DCB=60°﹣30°=30°,
∵BD=1,
∴CD=AD=2,
∴AB=1+2=3,
在Rt△BCD中,由勾股定理得:CB=,
在Rt△ABC中,由勾股定理得:AC==2,
故答案為:2.
“點(diǎn)睛”本題考查了線段垂直平分線,含30度角的直角三角形,等腰三角形的性質(zhì),三角形的內(nèi)角和定理等知識點(diǎn)的應(yīng)用,主要考查學(xué)生運(yùn)用這些定理進(jìn)行推理的能力,題目綜合性比較強(qiáng),難度適中.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC,∠ACB的平分線的交點(diǎn)P恰好在BC邊的高AD上,則△ABC一定是( )
A.直角三角形
B.等邊三角形
C.等腰三角形
D.等腰直角三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AE上一點(diǎn)(不與點(diǎn)A、E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,AD與BE交于點(diǎn)O,AD與BC交于點(diǎn)P,BE與CD交于點(diǎn)Q,連接PQ,以下四個(gè)結(jié)論:①△ACD≌△BCE;②△CDP≌△CEQ;③PQ∥AE;④∠AOB=60°.一定成立的結(jié)論有(把你認(rèn)為正確結(jié)論的序號都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明記錄了一星期天的最高氣溫如下表,則這個(gè)星期每天的最高氣溫的中位數(shù)是( )
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
最高氣溫(℃) | 22 | 24 | 23 | 25 | 24 | 22 | 21 |
A.22℃
B.23℃
C.24℃
D.25℃
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com