如圖,矩形ABCD中,AB=12cm,AD=16cm,動點E、F分別從A點、C點同時出發(fā),均以2cm/s的速度分別沿AD向D點和沿CB向B點運動。

(1)經(jīng)過幾秒首次可使EF⊥AC?
(2)若EF⊥AC,在線段AC上,是否存在一點P,使?若存在,請說明P點的位置,并予以證明;若不存在,請說明理由。
解:(1)設經(jīng)過x秒首次可使EF⊥AC,AC與EF相交于點O,

則AE=2x,CF=2x。
∵四邊形ABCD是矩形,∴∠EAO=∠FCO,∠AOE=∠COF。
∴△AOE≌△COF(AAS)!郃O=OC,OE=OF。
∵AB=12cm,AD=16cm,
∴根據(jù)勾股定理得AC=20cm!郞C=10cm。
在Rt△OFC中,,∴。
過點E作EF⊥BC交BC于點H,
在Rt△EFN中,,∴。
解得。
∴經(jīng)過秒首次可使EF⊥AC。
(2)過點E作EP⊥AD交AC于點P,則P就是所求的點。證明如下:
由作法,∠AEP=900,
又EF⊥AC,即∠AOE=900!唷鰽EP∽△AOE。
,即。
。
(1)設經(jīng)過x秒首次可使EF⊥AC,AC與EF相交于點O,過點E作EF⊥BC交BC于點H,由AAS證明△AOE≌△COF,得到AO=OC,OE=OF,從而求得OC=10cm,在Rt△OFC中,由勾股定理得。因此,在Rt△EFN中, 由勾股定理得,即,解出即可。
(2)證明△AEP∽△AOE即可得出結(jié)論。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:計算題

已知: ,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下面是一個幾何體的三視圖,則這個幾何體的形狀是【   】
A.圓柱B.圓錐C.圓臺D.三棱柱

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=     ..

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

同一時刻,物體的高與影子的長成比例,某一時刻,高1.6m的人影長啊1.2m,一電線桿影長為9m,則電線桿的高為      m.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

在平行四邊形ABCD中,E在DC上,若DE:EC=1:2,則BF:BE=       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

(2013年四川眉山3分)如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點D、E為BC邊上的兩點,且∠DAE=45°,連接EF、BF,則下列結(jié)論:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,
其中正確的有【   】個.

A.1     B.2      C.3     D.4

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

若2a=3b=4c,且abc≠0,則的值是
A.2B.﹣2C.3D.﹣3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,點C將線段AB分成兩部分,如果,那么稱點C為線段AB的黃金分割點。某數(shù)學興趣小組在進行課題研究時,由黃金分割點聯(lián)想到“黃金分割線”,類似地給出“黃金分割線”的定義:直線l將一個面積為S的圖形分成兩部分,這兩部分的面積分別為S1、S2,如果,那么稱直線l為該圖形的黃金分割線.

(1)如圖2,在△ABC中,∠A=360°,AB=AC,∠C的平分線交AB于點D,請問點D是否是AB邊上的黃金分割點,并證明你的結(jié)論;
(2)若△ABC在(1)的條件下,如圖(3),請問直線CD是不是△ABC的黃金分割線,并證明你的結(jié)論;
(3)如圖4,在直角梯形ABCD中,∠D=∠C=900,對角線AC、BD交于點F,延長AB、DC交于點E,連接EF交梯形上、下底于G、H兩點,請問直線GH是不是直角梯形ABCD的黃金分割線,并證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案