【題目】如圖,點A的坐標為(4,2).將點A繞坐標原點O旋轉(zhuǎn)90°后,再向左平移1個單位長度得到點A′,則過點A′的正比例函數(shù)的解析式為_____.
【答案】y=﹣x或y=-4x
【解析】
直接利用旋轉(zhuǎn)的性質(zhì)結(jié)合平移的性質(zhì)得出對應(yīng)點位置,再利用待定系數(shù)法求出正比例函數(shù)解析式.
當點A繞坐標原點O逆時針旋轉(zhuǎn)90°后,再向左平移1個單位長度得到點A′,
則A′(-3,4),
設(shè)過點A′的正比例函數(shù)的解析式為:y=kx,
則4=-3k,
解得:k=-,
則過點A′的正比例函數(shù)的解析式為:y=-x,
同理可得:點A繞坐標原點O順時針旋轉(zhuǎn)90°后,再向左平移1個單位長度得到點A′,此時A′(1,-4),
設(shè)過點A′的正比例函數(shù)的解析式為:y=k′x,
則-4=k′,
則過點A′的正比例函數(shù)的解析式為:y=-4x.
故答案為:y=﹣x或y=-4x.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生對“厲行勤儉節(jié)約,反對鋪張浪費”主題活動的參與情況,小強在全校范圍內(nèi)隨機抽取了若干名學(xué)生并就某日午飯浪費飯菜情況進行了調(diào)查,將調(diào)查內(nèi)容分為四組:飯和菜全部吃完;:有剩飯但菜吃完;:飯吃完但菜有剩;:飯和菜都有剩.根據(jù)調(diào)查結(jié)果,繪制了如圖所示兩幅不完整的統(tǒng)計圖.
回答下列問題:
(1)這次被抽查的學(xué)生共有 人,扇形統(tǒng)計圖中,“組”所對應(yīng)的圓心角的度數(shù)為 ;
(2)補全條形統(tǒng)計圖;
(3)已知該中學(xué)共有學(xué)生人,請估計這日午飯有剩飯的學(xué)生人數(shù),若按平均每人剩克米飯計算,這日午飯將浪費多少千克米飯?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠MON=30°,點A1、A2、A3、……在射線ON上,點B1、B2、B3、……在射線OM上,△A1B1A2、△A2B2A3、△A3B3A4,……均為等邊三角形,若OA1=1,則△A2019B2019A2020的邊長為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,⊙C的半徑為r,P是與圓心C不重合的點,點P關(guān)于⊙C的反稱點的定義如下:若在射線CP上存在一點P′,滿足CP+CP′=2r,則稱P′為點P關(guān)于⊙C的反稱點,如圖為點P及其關(guān)于⊙C的反稱點P′的示意圖.
特別地,當點P′與圓心C重合時,規(guī)定CP′=0.
(1)當⊙O的半徑為1時.
①分別判斷點M(2,1),N(,0),T(1, )關(guān)于⊙O的反稱點是否存在?若存在,求其坐標;
②點P在直線y=﹣x+2上,若點P關(guān)于⊙O的反稱點P′存在,且點P′不在x軸上,求點P的橫坐標的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點A,B,若線段AB上存在點P,使得點P關(guān)于⊙C的反稱點P′在⊙C的內(nèi)部,求圓心C的橫坐標的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】快車從M地出發(fā)沿一條公路勻速前往N地,慢車從N地出發(fā)沿同一條公路勻速前往M地,已知快車比慢車晚出發(fā)0.5小時,快車先到達目的地.設(shè)慢車行駛的時間為t(h),快慢車輛車之間的距離為s(km),s與t的函數(shù)關(guān)系如圖1所示.
(1)求圖1中線段BC的函數(shù)表達式;
(2)點D的坐標為 ,并解釋它的實際意義;
(3)設(shè)快車與N地的距離為y(km),請在圖2中畫出y關(guān)于慢車行駛時間t的函數(shù)圖象.(標明相關(guān)數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A在拋物線y=x2+bx+c(b>0)上,且A(1,-1),
(1)若b-c=4,求b,c的值;
(2)若該拋物線與y軸交于點B,其對稱軸與x軸交于點C,則命題“對于任意的一個k(0<k<1),都存在b,使得OC=k·OB.”是否正確?若正確,請證明;若不正確,請舉反例;
(3)將該拋物線平移,平移后的拋物線仍經(jīng)過(1,-1),點A的對應(yīng)點A1為
(1-m,2b-1).當m≥-時,求平移后拋物線的頂點所能達到的最高點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,∠A=60°,BC=6.
(1)用尺規(guī)作△ABC的外接圓
(2)求∠BOC的度數(shù)
(3)求圓O的半徑
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近年來,共享單車逐漸成為高校學(xué)生喜愛的“綠色出行”方式之一,自2016年國慶后,許多高校均投放了使用手機支付就可隨取隨用的共享單車.某高校為了解本校學(xué)生出行使用共享單車的情況,隨機調(diào)查了某天部分出行學(xué)生使用共享單車的情況,并整理成如下統(tǒng)計表.
使用次數(shù) | 0 | 1 | 2 | 3 | 4 | 5 |
人數(shù) | 11 | 15 | 23 | 28 | 18 | 5 |
(1)這天部分出行學(xué)生使用共享單車次數(shù)的中位數(shù)是 ,眾數(shù)是 ,該中位數(shù)的意義是 ;
(2)這天部分出行學(xué)生平均每人使用共享單車約多少次?(結(jié)果保留整數(shù))
(3)若該校某天有1500名學(xué)生出行,請你估計這天使用共享單車次數(shù)在3次以上(含3次)的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校中學(xué)生對《最強大腦》、《朗讀者》、《中國詩詞大會》、《出彩中國人》四個電視節(jié)目的喜愛情況,隨機抽取了x名學(xué)生進行調(diào)查統(tǒng)計(要求每名學(xué)生選出并且只能選出一個自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計圖表:根據(jù)以上提供的信息,解答下列問題:
節(jié)目 | 人數(shù)(名) | 百分比 |
最強大腦 | 5 | 10% |
朗讀者 | 15 | b% |
中國詩詞大會 | a | 40% |
出彩中國人 | 10 | 20% |
(1)x= ,a= ,b= ;
(2)補全上面的條形統(tǒng)計圖;
(3)在喜愛《最強大腦》的學(xué)生中,有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機抽取2名同學(xué)代表學(xué)校參加濰坊市組織的競賽活動,請用樹狀圖或列表法求出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com