如圖,已知△ABC.
(1)作∠B的平分線.(要求:用尺規(guī)作圖,保留作圖痕跡,不寫作法和證明)
(2)若∠C=90°,∠B=60°,BC=4,∠B的平分線交AC于點D,請求出線段BD的長.

【答案】分析:(1)根據(jù)題意畫出圖形,(2)由題意推出∠CBD=30°,根據(jù)∠C=90°,BC=4,即可推出BD的長度.
解答:解:(1)


(2)∵∠C=90°,∠B=60°,BD是∠B的平分線,
∴∠CBD=30°,
∵BC=4,=tan∠DBC=tan30°,CD=
∴BD=2CD=
點評:本題主要考查角平分線的性質(zhì)、解直角三角形、作角平分線,關(guān)鍵在于根據(jù)題意畫出圖形,然后解直角三角形即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,已知△ABC的三個頂點分別為A(2,3)、B(3,1)、C(-2,-2).
(1)請在圖中作出△ABC關(guān)于直線x=-1的軸對稱圖形△DEF(A、B、C的對應(yīng)點分別是D、E、F),并直接寫出D、E、F的坐標;
(2)求四邊形ABED的面積.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

24、如圖,已知△ABC和△CDE均為等邊三角形,且點B、C、D在同一條直線上,連接AD、BE,交CE和AC分別于G、H點,連接GH.
(1)請說出AD=BE的理由;
(2)試說出△BCH≌△ACG的理由;
(3)試猜想:△CGH是什么特殊的三角形,并加以說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知△ABC,∠ACB=90°,AC=BC,點E、F在AB上,∠ECF=45°.
(1)求證:△ACF∽△BEC;
(2)設(shè)△ABC的面積為S,求證:AF•BE=2S;
(3)試判斷以線段AE、EF、FB為邊的三角形的形狀并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、(1)已知線段a,h,用直尺和圓規(guī)作等腰三角形ABC,底邊BC=a,BC邊上的高為h(要求尺規(guī)作圖,不寫作法和證明)
(2)如圖,已知△ABC,請作出△ABC關(guān)于X軸對稱的圖形.并寫出A、B、C關(guān)于X軸對稱的點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,已知△ABC是銳角三角形,且∠A=50°,高BE、CF相交于點O,求∠BOC的度數(shù).

查看答案和解析>>

同步練習冊答案