3.如圖,△ABC中,BC=7,AB的垂直平分線分別交AB、BC于點D、E,AC的垂直平分線分別交AC、BC于點F、G.則△AEG的周長為7.

分析 由題意知,DE、FG分別是邊AB、AC的垂直平分線,根據(jù)線段垂直平分線的性質,可得,BE=AE,AG=GC,又C△AEG=AE+AG+EG,BC=8,所以,代入即可得出.

解答 解:如圖.
∵DE、FG分別是邊AB、AC的垂直平分線,
∴BE=AE,AG=GC,
∴BE+GC=AE+AG,
∴C△AEG=AE+AG+EG,
=BE+GC+EG,
=BC,
又∵BC=7,
∴C△AEG=7.
故答案為:7.

點評 本題主要考查了線段垂直平分線的性質,熟練掌握線段垂直平分線上的點到兩端點的距離相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

13.若3m=2,3n=4,則32m+n+1=48.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.計算(-2a)2•a3,正確的是( 。
A.2a5B.-4a5C.4a5D.4a6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.如圖所示是一塊長、寬、高分別為3cm、4cm、6cm的長方體紙箱(紙箱厚度忽略不計)
(1)求長方體底面的對角線長.
(2)若揭開蓋子EFGH后,捕入一根長為10cm的細木棒,則細木棒露在外面的最短長度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

18.(1)當x<6時,分式$\frac{4}{6-x}$的值為正;
(2)當x>1時,分式$\frac{1-x}{2{x}^{2}+1}$的值為負;
(3)當xx≤0且x≠-2時,分式$\frac{x+2}{|x|-2}$的值為-1.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.下列計算錯誤的是( 。
A.sin60°-sin30°=sin30°B.sin245°+cos245°=1
C.(tan60°)2=3D.tan30°=$\frac{sin30°}{cos30°}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

15.在線段AB上取一點C,使AC=$\frac{1}{3}$AB,再在線段AB的延長線上取一點D,使DB=$\frac{1}{4}$AD,則線段BC的長度是線段DC長度的( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

12.如圖:正方形ABCD中,P是BC上的點,BP=3PC,Q是CD的中點.
(1)求證:△ADQ∽△QCP;
(2)已知∠QPC=55°,求∠QAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

13.如果a的倒數(shù)是-1,那么a2016=( 。
A.1B.-1C.2016D.-2016

查看答案和解析>>

同步練習冊答案