【題目】如圖,拋物線 經(jīng)過點,與軸相交于,兩點,

1)拋物線的函數(shù)表達式;

2)點在拋物線的對稱軸上,且位于軸的上方,將沿沿直線翻折得到,若點恰好落在拋物線的對稱軸上,求點和點的坐標(biāo);

3)設(shè)是拋物線上位于對稱軸右側(cè)的一點,點在拋物線的對稱軸上,當(dāng)為等邊三角形時,求直線的函數(shù)表達式.

【答案】1;(2)點的坐標(biāo)為;(3)直線的函數(shù)表達式為.

【解析】

1)根據(jù)待定系數(shù)法確定函數(shù)關(guān)系式即可求解;

2)設(shè)拋物線的對稱軸與軸交于點,則點的坐標(biāo)為.

由翻折得,求出CH’的長,可得,求出DH的長,則可得D的坐標(biāo);

3)由題意可知為等邊三角形,分兩種討論當(dāng)點軸上方時,點軸上方,連接,,證出,可得垂直平分,點在直線上,可求出直線的函數(shù)表達式;當(dāng)點在軸下方時,點軸下方,同理可求出另一條直線解析式.

1)由題意,得

解得

拋物線的函數(shù)表達式為.

2拋物線與軸的交點為,

,拋物線的對稱軸為直線.

設(shè)拋物線的對稱軸與軸交于點,則點的坐標(biāo)為,.

上翻折得.

中,由勾股定理,得.’

的坐標(biāo)為.

.

由翻折得.

中,.

的坐標(biāo)為.

3)取(2)中的點,連接.

.

為等邊三角形,

分類討論如下:

當(dāng)點軸上方時,點軸上方.

連接,

,為等邊三角形,

,.

.

,

在拋物線的對稱軸上,

,

,

垂直平分.

由翻折可知垂直平分.

在直線上,

設(shè)直線的函數(shù)表達式為

解得

直線的函數(shù)表達式為.

當(dāng)點在軸下方時,點軸下方.

,為等邊三角形,

,.

.

.

.

,

.

.

設(shè)軸相交于點.

中,.

的坐標(biāo)為,

設(shè)直線的函數(shù)表達式為

解得

直線的函數(shù)表達式為.

綜上所述,直線的函數(shù)表達式為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎綜合與實踐小組學(xué)習(xí)了三角函數(shù)后,開展了測量本校旗桿高度的實踐活動.他們制訂了測量方案,并利用課余時間完成了實地測量.他們在該旗桿底部所在的平地上,選取兩個不同測點,分別測量了該旗桿頂端的仰角以及這兩個測點之間的距離.為了減小測量誤差,小組在測量仰角的度數(shù)以及兩個測點之間的距離時,都分別測量了兩次并取它們的平均值作為測量結(jié)果,如表是不完整測量數(shù)據(jù).

課題

測量旗桿的高度

成員

組長:小穎,組員:小明,小剛,小英

測量工具

測量角度的儀器,皮尺等

測量示意圖

說明:

線段GH表示學(xué)校旗桿,測量角度的儀器的高度ACBD1.62m,測點A,BH在同一水平直線上,AB之間的距離可以直接測得,且點GH,A,B,C,D都在同一豎直平面內(nèi),點CD,E在同一條直線上,點EGH上.

測量數(shù)據(jù)

測量項目

第一次

第二次

平均值

GCE的度數(shù)

30.6°

31.4°

31°

GDE的度數(shù)

36.8°

37.2°

37°

A,B之間的距離

10.1m

10.5m

   m

1)任務(wù)一:完成表格中兩次測點A,B之間的距離的平均值.

2)任務(wù)二:根據(jù)以上測量結(jié)果,請你幫助該“綜合與實踐”小組求出學(xué)校旗桿GH的高度.(精確到0.1m)(參考數(shù)據(jù):sin31°0.51,cos31°0.86,tan31°0.60,sin37°0.60cos37°0.80,tan37°0.75

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題發(fā)現(xiàn):

1)如圖1,在RtABC中,∠BAC=30°,∠ABC90°,將線段AC繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC, BCD的度數(shù)是  ;線段BD,AC之間的數(shù)量關(guān)系是  

類比探究:

2)在RtABC中,∠BAC=45°,∠ABC90°,將線段AC繞點A逆時針旋轉(zhuǎn),旋轉(zhuǎn)角α=2∠BAC,請問(1)中的結(jié)論還成立嗎?;

拓展延伸:

3)如圖3,在RtABC中,AB2AC4,∠BDC90°,若點P滿足PBPC,∠BPC90°,請直接寫出線段AP的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從正五邊形的五個頂點中,任取四個頂點連成四邊形,則這個四邊形是等腰梯形的概率是( )

A.1B. C. D.0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)積極組織學(xué)生開展課外閱讀活動,為了解本校學(xué)生每周課外閱讀的時間量t(單位:小時),采用隨機抽樣的方法抽取部分學(xué)生進行了問卷調(diào)查,調(diào)查結(jié)果按0≤t2,2≤t3,3≤t4t≥4分為四個等級,并分別用A、BC、D表示,根據(jù)調(diào)查結(jié)果統(tǒng)計數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:

1)求出x的值,并將不完整的條形統(tǒng)計圖補充完整;

2)若該校共有學(xué)生2500人,試估計每周課外閱讀時間量滿足2≤t4的人數(shù);

3)若本次調(diào)查活動中,九年級(1)班的兩個學(xué)習(xí)小組分別有3人和2人每周閱讀時間量都在4小時以上,現(xiàn)從這5人中任選2人參加學(xué)校組織的知識搶答賽,求選出的2人來自不同小組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,的頂點 ,,交軸于點

1)如圖①,求點的坐標(biāo);

2)如圖②:將線段繞點順時針旋轉(zhuǎn)后得線段,連接,求點的坐標(biāo);

3)如圖③, 軸正半軸上一動點, 在第二象限內(nèi),,且,過點垂直軸于點,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,BMDN分別平分∠ABC,∠CDA,沿BP折疊,點A恰好落在BM上的點E處,延長PEDN于點F沿DQ折疊,點C恰好落在DN上的點G處,延長QGBM于點H,若四邊形EFGH恰好是正方形,且邊長為1,則矩形ABCD的面積為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條拋物線與軸交于兩點,與軸交于點為拋物線的頂點,點軸上.

1)求拋物線解析式;

2)若,求點的坐標(biāo);

3)過點作直線交拋物線于,是否存在以點,,,為頂點的四邊形是平行四邊形?若存在,請求出點的坐標(biāo);若不存在,請說明理由;

4)坐標(biāo)平面內(nèi)一點到點的距離為1個單位,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A和點B都是反比例函數(shù)在第一象限內(nèi)圖象上的點,點A的橫坐標(biāo)為1,點B的縱坐標(biāo)為1,連接AB,以線段AB為邊的矩形ABCD的頂點D,C恰好分別落在x軸,y軸的負(fù)半軸上,連接AC,BD交于點E,若的面積為6,則k的值為(

A.2B.3C.6D.12

查看答案和解析>>

同步練習(xí)冊答案