【題目】如圖所示,正比例函數(shù)y= x的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于點(diǎn) ,過(guò)點(diǎn)A作X軸的垂線,垂足為M,已知△AOM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果點(diǎn) 為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn) 與點(diǎn) 不重合),且點(diǎn) 的橫坐標(biāo)為1,在 軸上求一點(diǎn) ,使 最。
【答案】
(1)解:根據(jù)題意可設(shè)A點(diǎn)的坐標(biāo)為(a,b),則b= .∴ab=k .
∵△AOM的面積為1.
∴ ab=1 ,
∴ k=1 .
∴ k=2.
∴ 反比例函數(shù)的解析式為y=
(2)解:由 得 或 ,
∵A在第一象限,
∴ A為(2,1),設(shè)A點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)為C,
則C點(diǎn)的坐標(biāo)為(2,-1)如要在x軸上求一點(diǎn)P,使PA+PB最。
則P點(diǎn)應(yīng)為BC和x軸的交點(diǎn),
如圖所示.設(shè)直線BC的解析式為y=mx+n.
∵ B為(1,2),
∴ ,解得: ,
∴ BC的解析式為y=-3x+5.
當(dāng)y=0時(shí),-3x+5=0,x=-,
∴ P點(diǎn)坐標(biāo)為( -,0)
【解析】(1)根據(jù)題意可設(shè)A點(diǎn)的坐標(biāo)為(a,b),△AOM的面積為1,由反比例函數(shù)的k的幾何意義,可得出ab=2,即|k|=2,k>0,即可求出反比例函數(shù)的解析式。
(2)要在x軸上求作一點(diǎn)P,而A、B兩點(diǎn)的x軸的同一側(cè),作點(diǎn)A關(guān)于x軸的對(duì)稱點(diǎn)C,連接BC交x軸于點(diǎn)P,先求出點(diǎn)C和點(diǎn)B的坐標(biāo),再求出直線BC的函數(shù)解析式,然后求出當(dāng)y=0時(shí),x的值,即可求出點(diǎn)P餓坐標(biāo)。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識(shí),掌握確定一個(gè)一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法,以及對(duì)軸對(duì)稱-最短路線問題的理解,了解已知起點(diǎn)結(jié)點(diǎn),求最短路徑;與確定起點(diǎn)相反,已知終點(diǎn)結(jié)點(diǎn),求最短路徑;已知起點(diǎn)和終點(diǎn),求兩結(jié)點(diǎn)之間的最短路徑;求圖中所有最短路徑.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A、B的坐標(biāo)分別為(6,0),(6,8)、動(dòng)點(diǎn)M、N分別從O、B同時(shí)出發(fā),都以每秒1個(gè)單位的速度運(yùn)動(dòng)、其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng)、過(guò)點(diǎn)N作NP⊥BC,交AC于P,連結(jié)MP、已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了t秒、
(1)P點(diǎn)的坐標(biāo)為( , )(用含t的代數(shù)式表示);
(2)試求 △MPA面積的最大值,并求此時(shí)t的值;
(3)請(qǐng)你探索:當(dāng)t為何值時(shí),△MPA是一個(gè)等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)國(guó)慶節(jié)搞促銷活動(dòng),購(gòu)物不超過(guò)200元不給優(yōu)惠,超過(guò)200(不含200元)元而不足500元,所有商品按購(gòu)物價(jià)優(yōu)惠10%,超過(guò)500元的,其中500元按9折優(yōu)惠,超過(guò)的部分按8折優(yōu)惠,A,B兩個(gè)商品價(jià)格分別為180元,550元。
(1) 某人第一次購(gòu)買一件A商品,第二次購(gòu)買一件B商品,實(shí)際共付款多少元?
(2) 若此人一次購(gòu)物購(gòu)買A,B商品各一件,則實(shí)際付款多少錢?
(3) 國(guó)慶期間,某人在該商場(chǎng)兩次購(gòu)物分別付款180元和550元,如果他合起來(lái)一次性購(gòu)買同樣的商品,還可節(jié)約多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了更好治理西太湖水質(zhì),保護(hù)環(huán)境,市治污公司決定購(gòu)買10臺(tái)污水處理設(shè)備,現(xiàn)有A、B兩種型號(hào)的設(shè)備,其中每臺(tái)的價(jià)格,月處理污水量如下表:
經(jīng)調(diào)查:購(gòu)買一臺(tái)A型設(shè)備比購(gòu)買一臺(tái)B型設(shè)備多2萬(wàn)元,購(gòu)買2臺(tái)A型設(shè)備比購(gòu)買4臺(tái)B型設(shè)備少4萬(wàn)元.
(1)求a、b的值;
(2)經(jīng)預(yù)算:市治污公司購(gòu)買污水處理設(shè)備的資金不超過(guò)47萬(wàn)元,你認(rèn)為該公司有哪幾種購(gòu)買方案;
(3)在(2)問的條件下,若該月要求處理西太湖的污水量不低于1860噸,為了節(jié)約資金,請(qǐng)你為治污公司設(shè)計(jì)一種最省錢的購(gòu)買方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將矩形ABCD沿對(duì)角線AC翻折,點(diǎn)B落在點(diǎn)F處,FC交AD于E.
(1)求證:△AFE≌△CDF;
(2)若AB=4,BC=8,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖17,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)A作BC的平行線交CE的延長(zhǎng)線于F,且AF=BD,連接BF.
(1)求證:BD=CD.
(2)如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
(3)當(dāng)△ABC滿足什么條件時(shí),四邊形AFBD為正方形?(寫出條件即可,不要求證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了調(diào)查八年級(jí)學(xué)生參加“乒乓”、“籃球”、“足球”、“排球”四項(xiàng)體育活動(dòng)的人數(shù),學(xué)校從八年級(jí)隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,根據(jù)調(diào)查結(jié)果制作了如下不完整的統(tǒng)計(jì)表、統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)以上信息解答下列各題:
(1)a= ;b= ;c= ;
(2)在扇形統(tǒng)計(jì)圖中,排球所對(duì)應(yīng)的圓心角是 度;
(3)若該校八年級(jí)共有600名學(xué)生,試估計(jì)該校八年級(jí)喜歡足球的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DO平分∠AOC,OE平分∠BOC,若OA⊥OB,
(1)當(dāng)∠BOC=30°,∠DOE=_______________; 當(dāng)∠BOC=60°,∠DOE=_______________;
(2)通過(guò)上面的計(jì)算,猜想∠DOE的度數(shù)與∠AOB有什么關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l1:與坐標(biāo)軸交于A,B兩點(diǎn),直線l2:(≠0)與坐標(biāo)軸交于點(diǎn)C,D.
(1)求點(diǎn)A,B的坐標(biāo);
(2)如圖,當(dāng)=2時(shí),直線l1,l2與相交于點(diǎn)E,求兩條直線與軸圍成的△BDE的面積;
(3)若直線l1,l2與軸不能圍成三角形,點(diǎn)P(a,b)在直線l2:(k≠0)上,且點(diǎn)P在第一象限.
①求的值;
②若,,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com