【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條“折線數(shù)軸”.圖中點(diǎn)A表示﹣10,點(diǎn)B表示10,點(diǎn)C表示18,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距28個長度單位.動點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著“折線數(shù)軸”的正方向運(yùn)動,從點(diǎn)O運(yùn)動到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時,動點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動,從點(diǎn)B運(yùn)動到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動的時間為t秒.問:
(1)動點(diǎn)P從點(diǎn)A運(yùn)動至C點(diǎn)需要多少時間?
(2)P、Q兩點(diǎn)相遇時,求出相遇點(diǎn)M所對應(yīng)的數(shù)是多少;
(3)求當(dāng)t為何值時,P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等.
【答案】(1)19秒;(2);(3)t的值為2、6.5、11或17
【解析】
(1)根據(jù)路程除以速度等于時間,可得答案;
(2)根據(jù)相遇時P,Q的時間相等,可得方程,根據(jù)解方程,可得答案;
(3)根據(jù)PO與BQ的時間相等,可得方程,根據(jù)解方程,可得答案.
解:(1)點(diǎn)P運(yùn)動至點(diǎn)C時,所需時間t=10÷2+10÷1+8÷2=19(秒),
(2)由題可知,P、Q兩點(diǎn)相遇在線段OB上于M處,設(shè)OM=x.
則10÷2+x÷1=8÷1+(10﹣x)÷2,
解得x=.
故相遇點(diǎn)M所對應(yīng)的數(shù)是.
(3)P、O兩點(diǎn)在數(shù)軸上相距的長度與Q、B兩點(diǎn)在數(shù)軸上相距的長度相等有4種可能:
①動點(diǎn)Q在CB上,動點(diǎn)P在AO上,則:8﹣t=10﹣2t,解得:t=2.
②動點(diǎn)Q在CB上,動點(diǎn)P在OB上,則:8﹣t=(t﹣5)×1,解得:t=6.5.
③動點(diǎn)Q在BO上,動點(diǎn)P在OB上,則:2(t﹣8)=(t﹣5)×1,解得:t=11.
④動點(diǎn)Q在OA上,動點(diǎn)P在BC上,則:10+2(t﹣15)=t﹣13+10,解得:t=17.
綜上所述:t的值為2、6.5、11或17.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)坐標(biāo)為,以原點(diǎn)為頂點(diǎn)的四邊形是平行四邊形,將邊沿軸翻折得到線段,連結(jié)交線段于點(diǎn).
(1)如圖1,當(dāng)點(diǎn)在軸上,且其坐標(biāo)為.
①求所在直線的函數(shù)表達(dá)式;
②求證:點(diǎn)為線段的中點(diǎn);
(2)如圖2,當(dāng)時,,的延長線相交于點(diǎn),試求的值.(直接寫出答案,不必說明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,△ABC的三個頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)(4,4),請解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1,并寫出點(diǎn)A1、B1、C1的坐標(biāo);
(2)將△ABC繞點(diǎn)C逆時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的△A2B2C2,并求出點(diǎn)A到A2的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C為線段AB的中點(diǎn),點(diǎn)D在線段CB上.
(1)圖中共有 條線段.
(2)圖中AD=AC+CD,BC=AB﹣AC,類似地,請你再寫出兩個有關(guān)線段的和與差的關(guān)系式:
① ;② .
(3)若AB=8,DB=1.5,求線段CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,射線OC在∠A0B的內(nèi)部,圖中共有3個角:∠AOB、∠AOC和∠BOC,若其中有一個角的度數(shù)是另一個角度數(shù)的兩倍,則稱射線OC是∠AOB的“定分線”
(1)一個角的平分線______這個角的“定分線”;(填“是”或“不是”)
(2)如圖2,若∠MPN= ,且射線PQ是∠MPN的“定分線”,則∠MPQ=_____(用含a的代數(shù)式表示出所有可能的結(jié)果)
(3)如圖2,若∠MPN=45°,且射線PQ繞點(diǎn)P從PN位置開始,以每秒10°的速度逆時針旋轉(zhuǎn),當(dāng)PQ與PN成90°時停止旋轉(zhuǎn),旋轉(zhuǎn)的時間為t秒.同時射線PM繞點(diǎn)P以每秒5°的速度逆時針旋轉(zhuǎn),并與PQ同時停止.當(dāng)PQ是∠MPN的“定分線”時,求t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),圖中共有______條線段,它們是_________________________.
如圖(2),圖中共有______條射線,指出其中的兩條:_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD⊥AB,EF⊥AB,垂足分別為D、F,∠1=∠2,
(1)試判斷DG與BC的位置關(guān)系,并說明理由.
(2)若∠A=70°,∠B=40°,求∠AGD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知線段AB和CD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)E,F之間距離是10cm,求AB,CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】陳老師為學(xué)校購買運(yùn)動會的獎品后,回學(xué)校向后勤處王老師交賬說:“我買了兩種書,共105本,單價分別為8元和12元,買書前我領(lǐng)了1500元,現(xiàn)在還余418元.”王老師算了一下,說:“你肯定搞錯了.”
(1)王老師為什么說他搞錯了?試用方程的知識給予解釋;
(2)陳老師連忙拿出購物發(fā)票,發(fā)現(xiàn)的確弄錯了,因?yàn)樗買了一個筆記本.但筆記本的單價已模糊不清,只能辨認(rèn)出應(yīng)為小于10元的整數(shù),筆記本的單價可能為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com