【題目】如圖,在正方形紙片中,對角線、交于點,折疊正方形紙片,使落在上,點恰好與上的點重合.展開后,折痕分別交、于點、.連接.下列結(jié)論:①;②;③;④四邊形是菱形;⑤.
其中正確結(jié)論的序號是( 。
A. ①②③④⑤B. ①②③④C. ①③④⑤D. ①④⑤
【答案】D
【解析】
①根據(jù)折疊的性質(zhì)我們能得出∠ADG=∠ODG,也就求出了∠ADG的度數(shù),那么在三角形AGD中用三角形的內(nèi)角和即可求出∠AGD的度數(shù);
②根據(jù)AE=EF<BE即AE<AB,∴tan∠AED=>2,
③根據(jù)△AGD與△OGD同高不等底,即可判斷;
④根據(jù)同位角相等得到EF∥AC,GF∥AB,由折疊的性質(zhì)得出AE=EF,即可判定四邊形AEFG是菱形;
⑤通過相似三角形DEF和DOG得出EF和OG的比例關(guān)系,然后再在BEF中求出BE和EF的關(guān)系,進(jìn)而求出BE和OG的關(guān)系.
解:因為在正方形紙片ABCD中,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,所以∠GAD=45°,∠ADG=∠ADO=22.5°,
所以∠AGD=112.5°,所以①正確.
因為tan∠AED=,因為AE=EF<BE,
所以AE<AB,所以tan∠AED=>2,因此②錯.
因為AG=FG>OG,△AGD與△OGD同高,
所以S△AGD>S△OGD,所以③錯.
根據(jù)題意可得:AE=EF,AG=FG,又因為EF∥AC,
所以∠FEG=∠AGE,又因為∠AEG=∠FEG,
所以∠AEG=∠AGE,所以AE=AG=EF=FG,
所以四邊形AEFG是菱形,因此④正確.
由折疊的性質(zhì)設(shè)BF=EF=AE=1,則AB=1+,BD=2+,DF=1+,由此可求=,
∵∠DFE=∠BAD=∠AOD=90°(折疊的性質(zhì)),
∵四邊形AEFG是菱形,
∴EF∥AG∥AC,
∴△DOG∽△DFE,
∴= =
EF=2OG,
在直角三角形BEF中,∠EBF=45°,
所以△BEF是等腰直角三角形,同理可證△OFG是等腰直角三角形,
在等腰直角三角形BEF和等腰直角三角形OFG中,BE2=2EF2=2GF2=2×2OG2,
所以BE=2OG.因此⑤正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是
A. 某種彩票的中獎機會是則買100張這種彩票一定會中獎
B. 為了解全國中學(xué)生的睡眠情況,應(yīng)該采用普查的方式
C. 一組數(shù)據(jù)3,4,5,5,5,6,10的平均數(shù)大于中位數(shù)
D. 同時拋擲兩枚均勻的硬幣,出現(xiàn)一枚正面朝上且另一枚反面朝上的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦期間,某超市銷售兩種不同品牌的蘋果,已知1千克甲種蘋果和1千克乙種蘋果的進(jìn)價之和為18元.當(dāng)銷售1千克甲種蘋果和1千克乙種蘋果利潤分別為4元和2元時,陳老師購買3千克甲種蘋果和4千克乙種蘋果共用82元.
(1)求甲、乙兩種蘋果的進(jìn)價分別是每千克多少元?
(2)在(1)的情況下,超市平均每天可售出甲種蘋果100千克和乙種蘋果140千克,若將這兩種蘋果的售價各提高1元,則超市每天這兩種蘋果均少售出10千克,超市決定把這兩種蘋果的售價提高x元,在不考慮其他因素的條件下,使超市銷售這兩種蘋果共獲利960元,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,現(xiàn)將平行四邊形ABCD沿其對角線AC折疊,使點B落在點B′處.AB′與CD交于點E.
(1)求證:△AED≌△CEB′;
(2)過點E作EF⊥AC交AB于點F,連接CF,判斷四邊形AECF的形狀并給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,點D是線段BC上一動點,連接AD,以AD為邊作△ADE∽△ABC,點N是AC的中點,連接NE,當(dāng)線段NE最短時,線段CD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A的坐標(biāo)是(4,0),并且OA=OC=4OB,動點P在過A,B,C三點的拋物線上.
(1)求拋物線的解析式;
(2)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,說明理由;
(3)過動點P作PE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當(dāng)線段EF的長度最短時,求出點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)一種新型電子產(chǎn)品,制造時每件的成本為40元,通過試銷發(fā)現(xiàn),銷售量萬件與銷售單價元之間符合一次函數(shù)關(guān)系,其圖象如圖所示.
求y與x的函數(shù)關(guān)系式;
物價部門規(guī)定:這種電子產(chǎn)品銷售單價不得超過每件80元,那么,當(dāng)銷售單價x定為每件多少元時,廠家每月獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=6,AM,BN是⊙O的兩條切線,點D是AM上一點,連接OD,作BE∥OD交⊙O于點E,連接DE并延長交BN于點.
(1)求證:DC是⊙O的切線;
(2)設(shè)AD=x,BC=y.求y與x的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍)
(3)若AD=1,連接AE并延長交BC于F,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個口袋中有4個完全相同的小球,把它們分別標(biāo)上數(shù)字﹣1,0,1,2,隨機的摸出一個小球記錄數(shù)字然后放回,在隨機的摸出一個小球記錄數(shù)字.求下列事件的概率:
(1)兩次都是正數(shù)的概率P(A);
(2)兩次的數(shù)字和等于0的概率P(B).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com