【題目】如圖,在正方形ABCD中,E為AB邊的中點(diǎn),G,F(xiàn)分別為AD,BC邊上的點(diǎn),若AG=1,BF=2,∠GEF=90°,求GF的長(zhǎng).
【答案】解:∵正方形ABCD,
∴∠A=∠B=90°,∠AEG+∠AGE=90°,
∵∠GEF=90°,
∴∠AEG+∠BEF=90°,
∴∠AGE=∠BEF,
∴△AEG∽△BFE,
∵E為AB邊的中點(diǎn),
∴GA:AE=BE:BF,
∴AE=BE= ,GE= ,EF= ,GF= =3.
另法:取GF的中點(diǎn)H,連接EH,
∵GA∥BF,GF和BA不平行,
∴四邊形GABF是梯形,
∴EH= (梯形中位線定理),
∵GA=1,BF=2,
∴EH= ,
∵∠GEF=90°,
∴△GEF是直角三角形,
∴GF=2EH=2× =3(直角三角形斜邊上的中線等于斜邊的一半).
【解析】求GF的長(zhǎng),可以先求GE、FE的長(zhǎng),E為AB邊的中點(diǎn),得出AE的長(zhǎng)是解決此問題的途徑,通過證明△AEG∽△BFE可以得出.
【考點(diǎn)精析】關(guān)于本題考查的正方形的性質(zhì),需要了解正方形四個(gè)角都是直角,四條邊都相等;正方形的兩條對(duì)角線相等,并且互相垂直平分,每條對(duì)角線平分一組對(duì)角;正方形的一條對(duì)角線把正方形分成兩個(gè)全等的等腰直角三角形;正方形的對(duì)角線與邊的夾角是45o;正方形的兩條對(duì)角線把這個(gè)正方形分成四個(gè)全等的等腰直角三角形才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小敏做了一個(gè)角平分儀ABCD,其中AB=AD,BC=DC,將儀器上的點(diǎn)A與∠PRQ的頂點(diǎn)R重合,調(diào)整AB和AD,使它們分別落在角的兩邊上,過 點(diǎn)A,C 畫一條射線AE,AE就是∠PRQ的平分線。此角平分儀的畫圖原理是:根據(jù)儀器結(jié)構(gòu),可得△ABC≌△ADC,這樣就有∠QAE=∠PAE。則說明這兩個(gè)三角形全等的依據(jù)是( )
A. SSS B. SAS C. ASA D. AAS
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D為BC上一點(diǎn),∠BAD=∠ABC,∠ADC=∠ACD,若∠BAC=63°,試求∠DAC、∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臺(tái)風(fēng)是一種自然災(zāi)害,它以臺(tái)風(fēng)中心為圓心在周圍上千米的范圍內(nèi)形成極端氣候,有極強(qiáng)的破壞力。如圖,有一臺(tái)風(fēng)中心沿東西方向AB由點(diǎn)A行駛向點(diǎn)B,已知點(diǎn) C為一海港,且點(diǎn) C與直線 AB上兩點(diǎn)A,B的距離分別為300km和400km,又 AB=500km,以臺(tái)風(fēng)中心為圓心周圍250km以內(nèi)為受影響區(qū)域。
(1)海港C受臺(tái)風(fēng)影響嗎?為什么?
(2)若臺(tái)風(fēng)的速度為20km/h,臺(tái)風(fēng)影響該海港持續(xù)的時(shí)間有多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以平行四邊形ABCO的頂點(diǎn)O為原點(diǎn),邊OC所在直線為x軸,建立平面直角坐標(biāo)系,頂點(diǎn)A、C的坐標(biāo)分別是(2,4)、(3,0),過點(diǎn)A的反比例函數(shù)y= 的圖象交BC于D,連接AD,則四邊形AOCD的面積是( )
A.6
B.7
C.9
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】重慶大坪時(shí)代天街已成為人們周末休閑娛樂的重要場(chǎng)所,時(shí)代天街從一樓到二樓有一自動(dòng)扶梯(如圖1),圖2是側(cè)面示意圖.已知自動(dòng)扶梯AC的坡度為i=1:2.4,AC=13m,BE是二樓樓頂,EF∥MN,B是EF上處在自動(dòng)扶梯頂端C正上方的一點(diǎn),且BC⊥EF,在自動(dòng)扶梯底端A處測(cè)得B點(diǎn)仰角為42°.(sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
為了吸引顧客,開發(fā)商想在P處放置一個(gè)高10m的《瘋狂動(dòng)物城》的裝飾雕像,并要求雕像最高點(diǎn)與二樓頂層要留出2m距離好放置燈具,請(qǐng)問這個(gè)雕像能放得下嗎?如果不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在由6個(gè)邊長(zhǎng)為1的小正方形組成的方格中:
(1)如圖(1),A、B、C是三個(gè)格點(diǎn)(即小正方形的頂點(diǎn)),判斷AB與BC的關(guān)系,并說明理由;
(2)如圖(2),連結(jié)三格和兩格的對(duì)角線,求∠α+∠β的度數(shù)(要求:畫出示意圖并給出證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生體質(zhì)情況,從各年級(jí)隨機(jī)抽取部分學(xué)生進(jìn)行體能測(cè)試,每個(gè)學(xué)生的測(cè)試成績(jī)按標(biāo)準(zhǔn)對(duì)應(yīng)為優(yōu)秀、良好、及格、不及格四個(gè)等級(jí).統(tǒng)計(jì)員在將測(cè)試數(shù)據(jù)繪制成圖表時(shí)發(fā)現(xiàn),優(yōu)秀漏統(tǒng)計(jì)人,良好漏統(tǒng)計(jì)人,于是及時(shí)更正,從而形成如下圖表.請(qǐng)按正確數(shù)據(jù)解答下列各題:
(1)填寫統(tǒng)計(jì)表.
(2)根據(jù)調(diào)整后數(shù)據(jù),補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該校共有學(xué)生人,請(qǐng)你估算出該校體能測(cè)試等級(jí)為“優(yōu)秀”的人數(shù).
學(xué)生體能測(cè)試成績(jī)各等次人數(shù)統(tǒng)計(jì)表
體能等級(jí) | 調(diào)整前人數(shù) | 調(diào)整后人數(shù) |
優(yōu)秀 | ||
良好 | ||
及格 | ||
不及格 | ||
合計(jì) |
學(xué)生體能測(cè)試成績(jī)各等次人數(shù)統(tǒng)計(jì)圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料并解決有關(guān)問題:
我們知道:|x|=.現(xiàn)在我們可以用這一結(jié)論來化簡(jiǎn)含有絕對(duì)值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來化簡(jiǎn)含有絕對(duì)值的代數(shù)式,如化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|時(shí),可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別為|x+1|與|x﹣2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1和,x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:
①x<﹣1;②﹣1≤x<2;③x≥2.
從而化簡(jiǎn)代數(shù)式|x+1|+|x﹣2|可分以下3種情況:
①當(dāng)x<﹣1時(shí),原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②當(dāng)﹣1≤x<2時(shí),原式=x+1﹣(x﹣2)=3;
③當(dāng)x≥2時(shí),原式=x+1+x﹣2=2x﹣1.綜上討論,原式=.
通過以上閱讀,請(qǐng)你解決以下問題:
(1)化簡(jiǎn)代數(shù)式|x+2|+|x﹣4|.
(2)求|x﹣1|﹣4|x+1|的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com