已知,在△ABC中,∠BAC=90°,∠ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊做正方形ADEF,連接CF

(1)如圖1,當點D在線段BC上時.求證CF+CD=BC;

(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關系;

(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側,其他條件不變;

①請直接寫出CF,BC,CD三條線段之間的關系;

②若正方形ADEF的邊長為,對角線AE,DF相交于點O,連接OC.求OC的長度.

 

【答案】

解:(1)證明:∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°!郃B=AC。

∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°。

∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF。

∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,

∴△BAD≌△CAF(SAS)。∴BD=CF。

∵BD+CD=BC,∴CF+CD=BC。

(2)CF﹣CD=BC。

(3)①CD﹣CF=BC。

②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°!郃B=AC。

∵四邊形ADEF是正方形,∴AD=AF,∠DAF=90°。

∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF。

∵在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,

∴△BAD≌△CAF(SAS)。∴∠ACF=∠ABD。

∵∠ABC=45°,∴∠ABD=135°!唷螦CF=∠ABD=135°!唷螰CD=90°。

∴△FCD是直角三角形。

∵正方形ADEF的邊長為且對角線AE、DF相交于點O,

∴DF=AD=4,O為DF中點。

∴OC=DF=2。

【解析】

試題分析:(1)三角形ABC是等腰直角三角形,利用SAS即可證明△BAD≌△CAF,從而證得CF=BD,據(jù)此即可證得。

(2)同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CF﹣CD=BC。

(3)①同(1)相同,利用SAS即可證得△BAD≌△CAF,從而證得BD=CF,即可得到CD﹣CF=BC。

②證明△BAD≌△CAF,△FCD是直角三角形,然后根據(jù)正方形的性質即可求得DF的長,則OC即可求得。 

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

25、已知:在△ABC中AB=AC,點D在CB的延長線上.
求證:AD2-AB2=BD•CD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)(1)化簡:(a-
1
a
)÷
a2-2a+1
a
;
(2)已知:在△ABC中,AB=AC.
①設△ABC的周長為7,BC=y,AB=x(2≤x≤3).寫出y關于x的函數(shù)關系式;
②如圖,點D是線段BC上一點,連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點M,ME∥AB交BC于點E,MF∥AC交BC于點F.求證:△MEF的周長等于BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、已知,在△ABC中,AB=AC=x,BC=6,則腰長x的取值范圍是
x>3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點E.∠B=38°,∠C=70°.
①求∠DAE的度數(shù);
②試寫出∠DAE與∠B、∠C之間的一般等量關系式(只寫結論)

查看答案和解析>>

同步練習冊答案